#### Preliminary Assumptions for On-Shore Wind Technologies

#### Gillian Charles GRAC October 2, 2014



## At the last meeting...

- Discussed current status of wind development in PNW
- Reviewed recent trends in development and technology
- Discussed future regional wind build-out and potential
  - Reviewed potential E. MT wind monthly capacity factors vs. BPA demand



2

# Today's Discussion

- Revisit overall trends in cost, technology, and development
- Discussion of capacity factors
- Introduce preliminary reference plant, preliminary capital cost, and O&M
- Discuss future of financial incentives and introduce preliminary levelized cost



3

# Technology Trends

- Increased: Turbine nameplate capacity, hub height, and rotor diameter
  - Avg. turbine nameplate in 2013 was 1.87 MW
  - Growth in average rotor diameter has outpaced other advances
- Class 2 and 3 turbines (designed for lower speed areas) are being developed in both lower <u>and</u> higher wind speed sites
  - Capturing lower quality wind resource areas

#### Wind Power Classifications – 80m





#### Wind Power Classifications – 100m





#### NREL: Location of Wind Power Development in the US



Northwest Power and Conservation Council

### Cost Trends

- Installed project costs continuing to decrease from 2009/2010 peaks
- Wind Power Purchase Agreement (PPA) prices dropped significantly over past 5 years
  - Notable: installed project costs haven't dropped as significantly comparatively

# Capacity Factors (1)

- Based on project-level capacity factors compiled by Berkeley Lab, trend shows general increase in recent years...
  - However, trend is not as significant or consistent as would be expected with technological advancements





Source: 2013 Wind Technologies Market Report, LBNL for US DOE 9

# Capacity Factors (2)

- Much of the high quality, easy access to transmission wind resource areas have been developed
- However, manufacturers are modifying their technology to improve capture of wind resource at lower quality sites
  - Taller turbines, longer blades, greater sweep area
- What does this do to capacity factors?
  - Are they improving? Declining? Staying the same?

# Capacity Factors (3)

#### Sixth Power Plan

| Wind<br>Resource Area         | Columbia<br>Basin | S. Idaho | Central<br>Montana | S. Alberta | E. Wyoming |
|-------------------------------|-------------------|----------|--------------------|------------|------------|
| Avg annual<br>capacity factor | 32%               | 30%      | 38%                | 38%        | 38%        |

#### Updated Hourly Wind Profiles for Aurora – 2008-2010

| Wind<br>Resource Area         | BPA | S. Idaho | E. Montana | Alberta | Wyoming |
|-------------------------------|-----|----------|------------|---------|---------|
| Avg annual<br>capacity factor | 30% | 25%      | 34%        | 35%     | 32%     |

#### EIA Annual Generation Data – 2008-2012

| Wind<br>Resource Area         | OR/WA | Idaho | Montana | Wyoming |
|-------------------------------|-------|-------|---------|---------|
| Avg annual<br>capacity factor | 29%   | 28%   | 35%     | 39%     |



nwcouncil.org

11

# A few updated definitions

**Price Year** – The vintage of the technology, overnight capital cost, and operating cost

**Year Dollars** – Reference year for setting dollar value; used consistently throughout power plan assumptions

**Construction Lead Time (months)** - amount of time it takes from conception to commissioning; Two phases for purposes of current Regional Portfolio Model (RPM):

- <u>Planning and Development</u> Identification of need (e.g. IRP) to establishment of EPC contract (includes all siting and licensing, environmental assessments, preliminary engineering)
- <u>Construction</u> From Notice to Proceed to complete construction and commissioning



#### Selection of Recent Wind Projects in PNW

| Project                     | In Service | <b>Technology</b><br>(# units, MW/unit, rotor<br>diameter, vendor) | Capacity           | Location               |
|-----------------------------|------------|--------------------------------------------------------------------|--------------------|------------------------|
| Tucannon River<br>Wind Farm | Est. 2015  | (116) 2.3 MW, 108m<br>Siemens G2                                   | 267 MW<br>(101MWa) | Columbia Cty, WA       |
| Lower Snake River           | Mar 2012   | (149) 2.3 MW, 101m<br>Siemens G2                                   | 343 MW             | Garfield Cty, WA       |
| Palouse                     | Dec 2012   | (58) 1.8 MW, 100m<br>Vestas V100                                   | 104 MW             | Whitman Cty, WA        |
| Rockland                    | Jan 2012   | (44) 1.8 MW,<br>100m Vestas V100                                   | 80 MW              | American Falls, ID     |
| Shephard's Flat             | Aug 2012   | (338) 2.3 MW, 100m GE                                              | 845 MW             | Morrow/Gilliam Cty, OR |
| РаТи                        | Dec 2010   | (6) 1.5 MW, GE                                                     | 9 MW               | Sherman Cty, OR        |
| Spion Kop                   | Nov 2012   | (25) 1.6 MW, 82.5M GE                                              | 40 MW              | Geyser, MT             |



# Preliminary Reference Plant

| Year Dollars | 2012 \$ |
|--------------|---------|
| Price Year   | 2015    |

| Technology & Configuration base | (40) 2.5MW GE Wind Turbine Generators                                         |  |
|---------------------------------|-------------------------------------------------------------------------------|--|
| Output Total (MW)               | 100 lifecycle avg*                                                            |  |
| Capacity Factor                 | TBD based on discussion, location                                             |  |
| Economic Life (Years)           | 20                                                                            |  |
| Construction Lead Time (Months) | 24 planning & development<br>30 construction<br>(54 months total, ~4.5 years) |  |

\* Assuming 0% derate over lifetime of plant, based on insufficient information. Is this the right assumption?



## Estimating Capital Cost Assumptions and Normalizations

**Normalization** – Establishing comparable estimates by adjusting source data to common year dollars, vintage/price years, plant configuration, etc.

- 1. Reference sources reported plant data, generic reports
- 2. Objective normalize to draft Seventh Plan reference plant design
  - Overnight capital costs in \$2012
  - Site-specific adjustments to capacity and heat rate
  - Site-specific labor costs
  - Typical configuration for PNW
- 3. Look for outliers, trends; forecast future 20 year trend line



### Estimating Escalation and Hi/Lo Bound for RPM

- Council's planning period is 20 years need to establish a cost escalation to project future costs from the base year
  - Estimation based on reference sources, trends
- Council uses high/low bounds to develop a probability function of capital cost → RPM
  - Hi/Low bounds capture the uncertainty range +/the capital cost estimate
  - Estimation is based on capital cost distribution of resources (see next slide)



### Preliminary Capital Cost of Wind





# Preliminary Capital Cost & Escalation Estimate of Wind

| Year Dollars      | 2012 \$             |
|-------------------|---------------------|
| Price Year        | 2015                |
|                   |                     |
| Capital Cost (MM) | \$225MM (lifecycle) |

|                         | + (                      |  |
|-------------------------|--------------------------|--|
| Capital Cost (\$/kW)    | \$2,250 (lifecycle)      |  |
| Hi Bound (\$/kW)        | \$2,925 (30% above)      |  |
| Lo Bound (\$/kW)        | \$1,575 (30% below)      |  |
| Capital Cost Escalation | -0.5% annual after 2015* |  |

\* Is this an appropriate estimate of future capital costs? Should it be more aggressive? More conservative? Future seems uncertain based on recent reports.



# Council Plant O&M Costs

- NPCC plant O&M estimates are intended to include the following:
  - Routine operating labor and materials
  - Routine maintenance labor and materials
  - Scheduled and unscheduled major maintenance labor and materials (including equipment replacement costs that are normally capitalized)
  - Startup costs (may be separated if feasible, for some analyses)
  - Consumables (water, chemicals, lubricants, catalysts)
  - Rents and royalties
  - Administrative costs
- NPCC plant O&M estimates exclude:
  - Property taxes and insurance
  - Emission offsets, allowances or taxes
  - Non-plant O&M costs (e.g. transmission costs)
  - These are included elsewhere in the Council's analyses.
- To the extent allowed by available information, plant O&M costs are separated into fixed and variable components.
  - Fixed costs affect only plant build and retirement decisions (lifecycle cost-effectiveness)
  - Variable costs affect dispatch as well as build and retirement decisions



# Estimating plant O&M costs

- Locate published data sources
- Normalize data
  - Year dollars
  - Vintage (price year)
  - Derated ISO lifecycle capacity
  - Scope of source data (e.g. add estimated admin costs if omitted)
  - Scaling factor (e.g., one vs. multiple turbines)
  - Regional cost indices
  - Plot as common metric (\$/kW-yr) (requires capacity factor assumption)
- Considering quality, representativeness and timeliness of sources, select values for fixed (\$/kW-yr) and variable (\$/MWh) O&M for the base price year (2015)
- Considering prospects for technological improvement, project future trends



# Considerations

- Relatively few published sources of O&M data.
- Scope of published O&M data tends to be inconsistent, often incomplete and not fully documented.
- Allocation of fixed and variable costs is inconsistent and often not documented.
- No single timely and well-documented source addresses all major technologies.
- Normalized values tend to be spread over a wide range.
- Plant O&M (excluding property tax and insurance) comprises a modest portion of overall resource revenue requirements:
  - GT plant: 8 11%
  - Reciprocating engine plant: 16%
  - Wind plant: 18%



#### Preliminary O&M Estimate for Wind Reference Plant

| Year Dollars | 2012 \$ |
|--------------|---------|
| Price Year   | 2015    |

| Capital Cost (MM)       | \$225MM (lifecycle)     |  |
|-------------------------|-------------------------|--|
| Capital Cost (\$/kW)    | \$2,250 (lifecycle)     |  |
| Hi Bound (\$/kW)        | \$2,925 (30% above)     |  |
| Lo Bound (\$/kW)        | \$1,575 (30% below)     |  |
| Capital Cost Escalation | -0.5% annual after 2015 |  |

| Fixed O&M    | \$35.00 (Sixth Plan \$35.80) |  |
|--------------|------------------------------|--|
| Variable O&M | \$2.00 (Sixth Plan \$2.20)   |  |



# Financial Incentives

- Production Tax Credit (PTC) expired in 2013, future unknown
  - Projects that began construction before end of 2013 eligible
- Investment Tax Credit (ITC)
  - Ability to take 30% ITC in lieu of PTC now expired

# Draft Seventh Plan Proposal:No financial incentives included in levelized costs



#### Preliminary Levelized Cost of Wind



#### Assumptions:

- FY14/15 BPA Transmission Rate Schedule
- Main grid location specific locations and potential additional transmission costs will come next time
- IOU financing , 2012\$, 2015 Operation



## Next Steps

- Refine estimates as necessary, based on feedback today
  - Settle on capacity factors for regions
- Once environmental methodology is developed for draft plan, incorporate into estimates
- Update transmission estimates to model wind in various parts of the region

