Snake River Steelhead Straying

Risk To Oregon Mid-C Steelhead Populations and Transportation Effects

ISAB Briefing 2010

Organization of Today's Presentation

 Hatchery Steelhead Straying into Mid-C steelhead populations and abundance of naturally spawning Snake River hatchery strays

Relationship of transportation and stray rates

- Adult conversion rates from Bonneville Dam to Lower Granite Dam for in-river and transported steelhead (CSS)
- Results of transport and in-river migrant straying into the Deschutes and John Day rivers from PIT tagged adult returns (2007-08 and 2008-2009)

Management Issues

- Mid-Columbia River steelhead ESA listed with the Deschutes, John Day and Umatilla populations essential for DPS recovery.
- Snake River Hatchery strays comprise a substantial proportion of spawners in the Deschutes River and John Day River populations.
- The Deschutes River Westside steelhead population has the largest abundance/productivity viability gap and is at high risk of extinction (Carmichael and Taylor 2009).
- Snake River hatchery strays are considered a primary threat to Deschutes River and John Day River steelhead populations, there are a considerable number of recovery plan management actions to address this threat and model results indicate a substantial productivity increase with reduction of stray abundance (Carmichael and Taylor 2009).

Origin of Steelhead Escapement Above Sherars Falls

YEAR

Recent 10-Year Average Proportion of Natural Spawners That Were Snake River Strays (ICTRT)

Population	<u>Spawner</u> Natural	<u>Abundance</u> Hatchery	<u>Snake River Hatchery</u> <u>Stray Proportion</u>
Deschutes River Eastside	975	526	35%
Deschutes River Westside	337	100	29%
Lower Mainstem John Day River	1620	180	10%
North Fork John Day River	1601	139	8%
Umatilla River	1398	74	5%

Proportion of Hatchery Steelhead Spawners in the John Day River Subbasin

Between Dam Conversion Rates

- Examines the proportion of adults that pass Bonneville Dam that pass Lower Granite Dam
- Compare the conversion rates between adults produced from transported smolts and adults produced from in-river migrants by origin

Snake River Wild Adult Steelhead Passage Between Bonneville Dam and Lower Granite Dam

Snake River Hatchery Adult Steelhead Passage Between Bonneville Dam and Lower Granite Dam

Adult PIT-tag Stray Analysis 2007-08 and 08-09 Run Years

NOAA transport tag groups

- Released at Lower Granite Dam as smolts in 2005, 2006, and 2007
- Return to the river group (RR)
- Barge transported group (BR)

Queried adult detections at Bonneville (N)

Compared proportion of Bonneville adults that were detected as strays from barged and return to river groups

- z-tests: statistical test to compare detection rates of two groups (RR vs. BR or hatchery vs. natural)
- John Day River: McDonald Ford
- Deschutes River: Sherars Falls
 - Unknown detection efficiency at the Deschutes River John Day sites

Adult Steelhead Detections of Transport Study Groups 2007-08 and 2008-09 Run Years

Smolt Group	Bonneville Dam (N)			John Day River			Deschutes River		
	Hatchery	Wild	All	Hatchery	Wild	%	Hatchery	Wild	%
Barged 2007-08	918	343	1,261	29	17	3.6	64	10	5.9
In-River 2007-08	151	77	228	1	0	0.4	1	0	0.4
Barged 2008-09	1584	612	2196	23	15	1.7	144	40	8.4
In-River 2008-09	152	87	239	0	0	0.0	4	0	1.6

Stray Rates Into the Deschutes for Transported and In-River Migrants

Stray Rates Into the John Day for Transported and In-River Migrants

Statistical Results (z-tests)

- Returning adults that were transported as smolts (BR) stray at greater rates than those that were allowed to migrate the river corridor (RR).
 - % detections of BR fish > % RR fish in John Day, P = 0.003
 - % detections of BR fish > % RR fish in Deschutes, P < 0.001
- Transported hatchery adults stray at greater rates into the Deschutes River than transported natural adults, P < 0.001</p>
- Similar rates of straying of transported hatchery and natural adults into the John Day River. There was no significant difference, P = 0.19

Proportion of Steelhead Juveniles Transported and Proportion of Hatchery Origin Spawners in the John Day Basin Two Years Later

Summary

- Snake River hatchery strays are considered a significant threat to viability of Oregon's Mid-C steelhead populations, model results indicate reduction in hatchery spawners will provide a significant productivity improvement.
- There is a significantly lower conversion rate from Bonneville Dam to Lower Granite Dam for adults returning from transported smolts (CSS).
- Two years of observations from the Deschutes and John Day rivers pit-tag monitoring indicate that adults, transported as smolts, stray at significantly higher rates than adults that were in-river migrants and these adults are the primary source of strays in Oregon's Mid-C steelhead populations.

Summary

- Results from Keefer et al.(2009) radio telemetry studies also indicate that the stray rates for transported fish are higher than inriver migrants.
- Maintaining a reduced number of Snake River hatchery smolts that are transported will contribute significantly to recovery of Mid-C steelhead in Oregon.