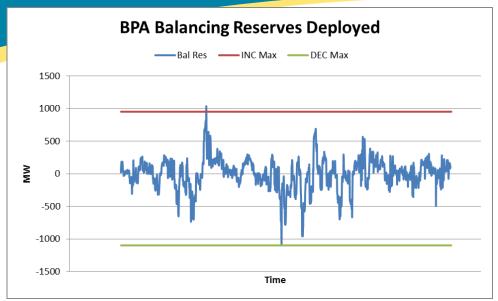
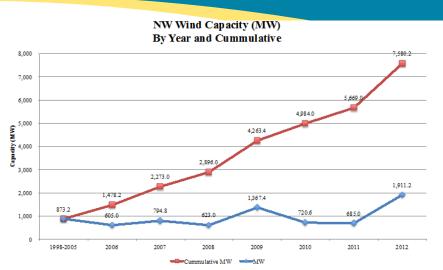
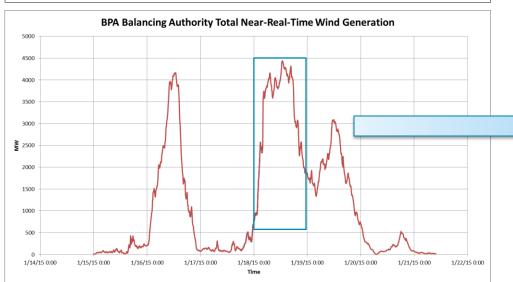
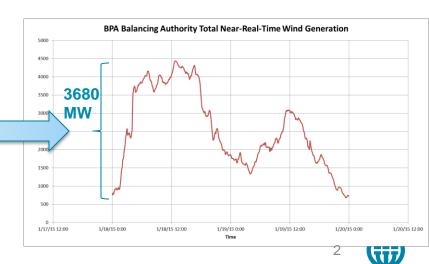
Submitted to
Northwest Power &
Conservation Council

JD Pool Pumped Storage Project FERC No. 13333

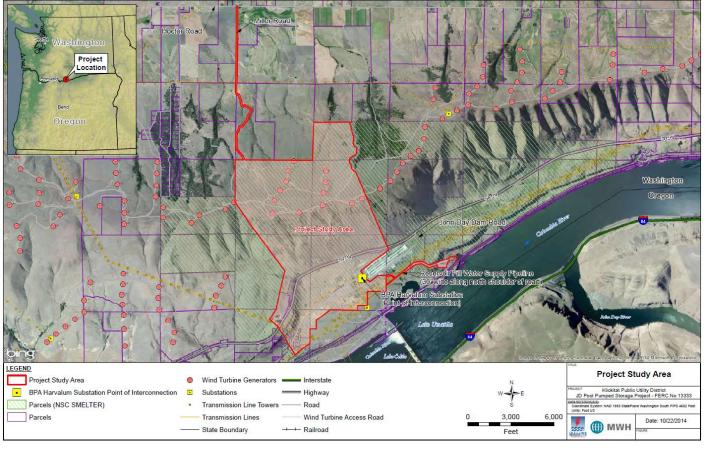

January 27, 2015






BUILDING A BETTER WORLD

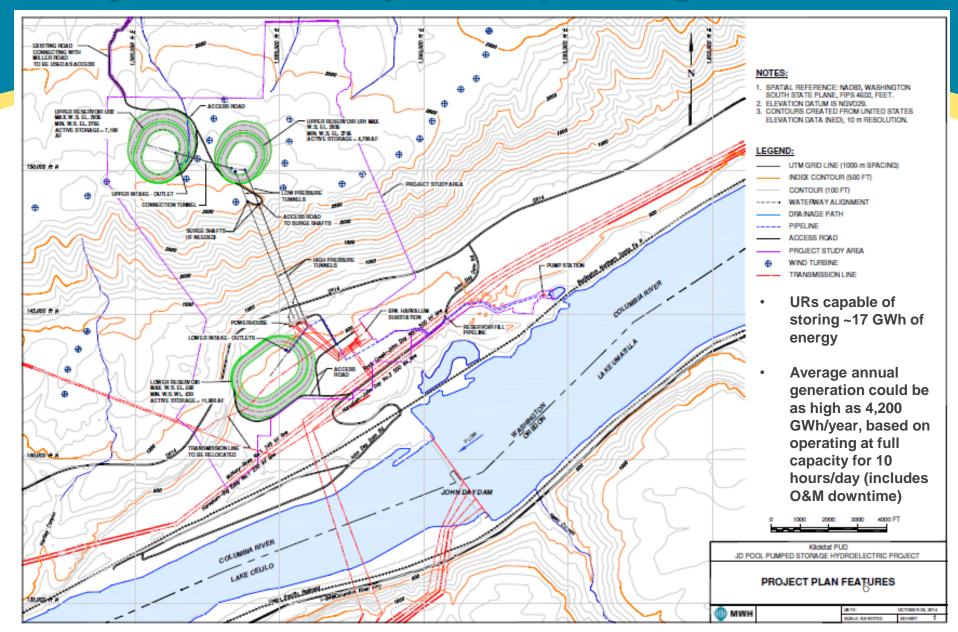
Project purpose & need – flexible capacity/energy



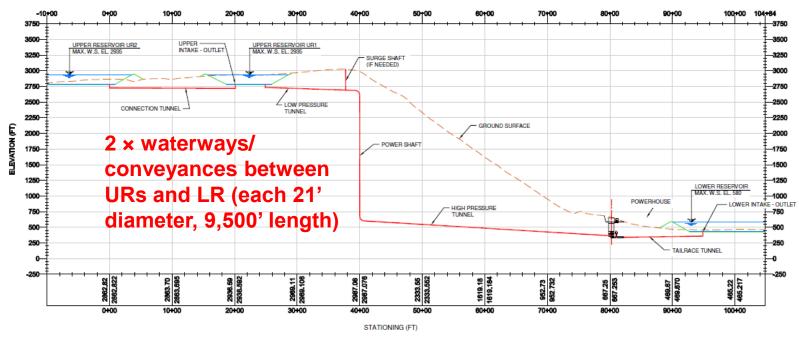
Future Market and Regulatory Drivers

- Energy Imbalance Market
- Optimization of FCRPS/Columbia River Treaty (i.e. flood, power, irrigation, ecosystem function, etc.)
- EPA Section 111(d)
- Washington State 2015 Climate Legislation
- California 50% RPS

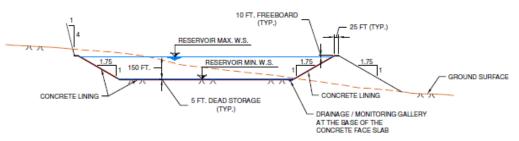
Regional Project Location and Study Area

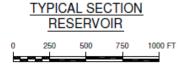

- Near significant high-voltage transmission (i.e. 500kV, DC Intertie)
- Close to 1000's of MWs of Gorge wind
- Brownfield redevelopment (i.e. former aluminum smelter)
- Technically attractive site (over 2000' net head, < 5 for L:H ratio)

Preliminary Design Concept Project Features


- Reservoirs formed with cut/fill embankment dams, fully lined with concrete
 - 2 x Upper Reservoirs (UR):
 - UR1: 5,000 AF active + dead volume (4,700 AF active)
 - UR2: 7,700 AF active + dead volume (7,100 AF active)
 - Lower Reservoirs (LR): 12,100 AF active + dead volume (11,800 AF active)
 - 2 x waterways/conveyances between URs and LR (each 21' diameter, 9,500' length)
- <u>"Pit-style" powerhouse</u> (PH) **1,200 MW** nameplate capacity (4 × 300-MW reversible pump/turbine motor/generator units
- <u>Interconnection</u> 3,000' new 230-kV from PH to BPA's **existing Harvalum Substation** within project area
- <u>Upgraded river intake</u> and 11,000' water supply pipeline for initial fill and periodic make-up water

Project Preliminary Concept Design




Project Profile

WATERWAY PROFILE

150' water level fluctuation

Existing water right and intake ("closed-loop")

	KPUD Water Right	As Percent of Min River Flow	As Percent of Max River Flow	As Percent of Avg. River Flow
Max Instantaneous Flow (cfs)	34.63	0.05%	0.02%	0.03%
Max Cumulative Annual Volume (AFY)	15,479			

	UR1	UR2	Lower Reservoir		
Volume at Mean Sea Level	5,000 AF	7,700 AF	12,100 AF		
Surface Area at Mean Sea Level	46 acres	67 acres	100 acres		
Estimated Net Loss / Estimated Refill	161 AFY	235 AFY	350 AFY		
Initial Fill Volume, total project	13,000 AF				

Time required for initial fill and make-up water:

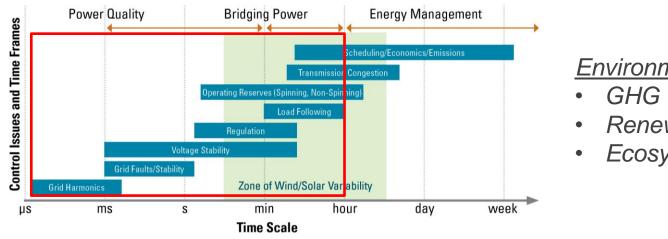
- Initial fill: ~ 6 months
- Annual make-up: ~ 10 days (timing flexible)

Viable, constructable site with positive development characteristics

- Site has previously studied for energy projects
- No desktop fatal flaws, but significant geotechnical studies necessary
- Water rights secured by KPUD and for the specific purpose of pumped storage facility by Washington law
- Site control land lease agreed upon by landowner and KPUD
- Broad-based favorable support from surrounding counties, stakeholders, etc. lending certainty that a license will be issued by FERC in a reasonable timeframe without controversy

Preliminary Overall Project Schedule

Project Development, Design and Construction



Activity	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
Studies, DLA, FLA										
FERC NEPA							Long lead-time project			ject
FERC License Issued							(i.e. 1	0+ yea	rs)	
Geotechnical investigations										
Preliminary Design (30%)										
Procurement										
Detailed Design (100%)										
Equipment Fabrication										
Construction										
Commissioning										10

JD Pool barriers to development

Economic analysis and modelling for sub-hourly energy grid services and environmental benefits not traditionally valued both as generation and load

Environmental

- Renewable Integration
- Ecosystem Function

- Market/regulatory framework to support a pumped storage project 2.
- Sponsor to **fund** a **capital intensive**, **long lead-time** project with 3. certainty of cost-recovery, rate of return, return on investment, etc.

