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RPM Thermal Dispatch Decision 

 S1n – Market Price – VOM 
 S2n – Fuel Cost + CO2 Cost 
 Then S1n – S2n = $ per MW earned by 

dispatch 
 So max(S1n – S2n, 0) determines how 

much money a generator would make 
when added over each period 
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Within Period Variation 

 Market price within a period has a 
distribution and gas price within a period 
has a distribution 
 The probability of the two distributions 

overlapping requires the computation of 
the location, range and correlation 
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Model Thermal Dispatch Logic 
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RPM NPV Calculation 

 Collection of costs and offsetting benefits 
 Market price in RPM covers more than the 

region 
 Exports are common, so what is the cost to 

the region?  
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On Average Generation 
Exceeds Loads 
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General Concept 

 Formulation can be a bit strange, e.g. note 
considering the value of a MWh 
 Value of Dispatched Generation = Market 

Price – Variable Costs 
 Market Price – Value of Dispatched 

Generation = Market Price – (Market Price – 
Variable Costs) = Variable Costs 

 So the formulation uses Market Price – 
Value of Dispatched Generation as a proxy 
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NPV Cost and Benefits 
 Costs in the NPV formulation 
 Cost of serving load at market price 
 Cost of acquiring new resources 
 Cost of generation curtailment and load shedding 
 Cost of fixed O&M for existing resources 
 Resource Adequacy Penalties 

 Offsetting benefits 
 Value of generation 
 Value of conservation 
 REC Values 
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NPV End Effects 

 Calculation uses a discount rate and 
adjusts for perpetuity 
 Tracking impacts on NPV in the RPM can 

help in understanding the formulation 
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Perpetuity Formulation 
 If you miss geometric series recall: 

 
 

 So discounting out into infinity from the start 
of the perpetuity period gives: 
 

   
 where E is the end of the study in periods 

(80) and S is the start of the perpetuity 
period (73) 
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RPM Web Interface 

 See it at http://bit.ly/RPM_Navigant 
 Data were updated relatively recently, 

Scenario 1B data will be posted after final 
data sets are collected 
 Does not perform optimization, i.e. 

creating an efficient frontier 
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http://bit.ly/RPM_Navigant


RPM Conservation Supply 
Curves and Logic 
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Updates Since the Sixth Plan 

 Substantially updated inputs and logic for 
conservation  
 Added concept of program year 
 Ramp rates can change by bin and program 

year 
 All cost effective bins are purchased 
 Lost opportunity conservation is available 

based on program cycle 
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Measure Combination 

 Conservation workbooks are posted with 
measure level data at 
http://www.nwcouncil.org/energy/power
plan/7/technical#Conservation 
 Conservation workbook bundler at 

https://github.com/NWCouncil/Conserv
WBExtract/releases creates input supply 
curves 
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Study Supply Input 

16 

Max energy and capacity by price 
bucket for the study for Lost 

Opportunity and Discretionary 
Conservation 



Program Year Supply 
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Max energy per program year for 
Lost Opportunity and 

Discretionary Conservation 



Program Year Ramp 
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Shows the percentage of the max 
that can be purchased in each 

program year 



Program Year 

 Moves ramps based on when programs in 
a bin become cost effective 
 E.g if for bin 5 the first program year allows 

3% of the max conservation to be purchased 
and the second program year allows 7% of the 
max conservation to be purchased, whenever 
the bin becomes cost effective, the first year 
3% is purchased the second year, if it remains 
cost effective, 7% is purchased 
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Effective Program Year Example 
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Bins 1 through 4 are 
always cost effective 

thus the program year 
always increments 

Bin 5 is cost effective at 
first but becomes too 

expensive 

When bin 5 becomes cost 
effective again then it picks 

back up with the next ramp in 
the supply curve inputs 



Combined Conservation Limits 

 Each year/period the ramp is multiplied 
by the max energy for the program 
year/period which is multiplied by a factor 
accounting for load differences between 
futures to determine the supply of 
conservation  
 When the cumulative purchases reach the 

study maximum, no more can be 
purchased 
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Conservation Acquisition 
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Ramps and 
supply limit 
purchases 

Once the study max 
is reached no more 
purchases are made 



Cost Effective Logic 

 Exponentially smoothed price (one game): 
 

where 
 
 

 
 Market Adjustment (Conservation Adder) 
 Avoided Cost Credit 
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Example Game Price Smoothing 
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Smooth price is more 
stable for purchasing 

decisions 



Compared to Conservation 
Cost 

 Conservation is cost effective if  
 
 
 
 
 

 Note, the 1.1 represents the Power Act credit 
for conservation 
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Average Cumulative 
Conservation 
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This shows total 
purchased cost-

effective conservation 



Into the RPM… 
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RPS Logic 

28 



REC Calculations 
 Starting REC bank balances 
 Existing resource annual contribution to REC 

banks 
 New resources optioned for adequacy or 

economics are allocated to REC banks based 
on proportion of RPS requirement 

 Resources built for RPS are allocated based 
on REC bank balance approaching zero  

 Expiring RECs based on First In First Out 
approximation 
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RPS Requirement 
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Requirements based on 
regional load allocated 

to each state 

Changes in RPS 
reflected in an increase 

in requirements 



Renewable Resources 
Allocation 
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Starting allocation 
based on Existing 

Resources 

Resources built for RPS 
are assigned to the 

state requiring the RECs 
when added 



REC Bank Balance Example 

0 10 20 30 40 50 60 70 800

1000

2000

3000

4000

500

1500

2500

3500

4500

Time

    

State
MT OR WA ID

32 

REC banking delays 
construction of 

renewables 



RPS Build Example 
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Builds are triggered 
when banks get close to 

zero 



No Renewable Build Example 
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In some futures, builds 
may not be required for 

the duration of the 
study 



Into the RPM again… 
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Scenario 1B - Disclaimer 
 Data inputs for the Draft Plan are still 

being finalized 
 Some of the model logic is still being 

vetted 
 Resource strategies are shown for 

illustrative purposes and are likely not 
optimal model solutions 
 All results shown with 80 games rather 

than 800 for time consideration 
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Scenario 1B  

 No carbon regulation 
 No RPS changes 
 Only known retirements 
 Includes 800 futures 
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Why not Negative Conservation 
Adders 
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Why not Negative Conservation 
Adders 

 Model spent over 70% of the time exploring 
extremely expensive and risky resource 
strategies 

 NPV arithmetic in effect guarentees negative 
adders will not result in optimal results 

 RPM allows for real-time scenario 
examination that will make it easy to 
compare to strategies with negative adders 
when questions arise 
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Resource Strategies 
 Option nothing – zero conservation adder 
 Option nothing – mid-range conservation 

adder 
 Option nothing – extreme conservation adder 
 Option DR Bin 1 and Recips – mid-range 

conservation adder 
 Option everything – zero conservation adder 
 Option everything – mid-range conservation 

adder 
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No Options Average Resource 
Build                                                                                                                                                                 
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RPS Resources still must 
be built, regardless of 

options selected 



Zero Conservation Adder 
Average Conservation 

0 10 20 30 40 50 60 70 800

1000

2000

500

1500

2500

Time

     

Conservation Type
Lost Opportunity Discretionary

42 

Minimal conservation 
by end of 2020 



No Options Zero Adder Costs 
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Costs driven by not 
meeting RAAC 

adequacy standards 



NPV Zero Conservation Adder 
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Mean NPV $107 Billion 
TailVar 90 $204 Billion 

NPVs include substantial 
penalties 



Zero Supply Conservation No 
Options 

 Sets all supply curves to zero so no 
conservation can be bought 
 No load shed in the 80 games run 
 Minimal generation curtailment 
 Market depth same as Sixth Plan, i.e. 

6000 MW 
 Demonstrates that Resource Adequacy 

Penalties have a much higher impact than 
curtailment/load shed penalties 
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Maximum Load Shed 
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Zero Load Shed for the 
80 games run 



Maximum Generation 
Curtailment 
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Minimal Curtailment 



No Options Zero Conservation 
Adder NPV Distribution 
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Mean NPV $242 Billion 
TailVar 90 $380 Billion 

Both primarily driven by 
penalities 



No Options $75 Conservation 
Adder NPV Distribution 
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Mean NPV $76 Billion 
TailVar 90 $135 Billion 

Still $9 Billion on average 
in Adequacy Penalties* 

* - This doesn’t indicate the mean would  
be $67 Billion without penalties, these 
numbers should not be added together 



No Options $150 Conservation 
Adder NPV Distribution 
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Mean NPV $78 Billion 
TailVar 90 $129 Billion 



No Options $150 Conservation 
Adder Average Conservation 
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Conservation adder of 
$150 leads to around 
1150 aMW combined 

conservation by end of 
2020 



DR Bin 1 and Recip Option 
Average Resource Build 
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Recips are added likely for 
adequacy requirements 



DR Bin 1 and Recip Option 
NPV Distribution 
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Mean NPV $71 Billion 
TailVar 90 $107 Billion 
Down to $4 Billion in 
adequacy penalties * 



Option Everything $0 Adder 
Resource Build 
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Option Everything $0 Adder NPV 
Distribution 

0 100,000 200,000 300,0-50,000 50,000 150,000 250,0000

10u

1u

2u

3u

4u

5u

6u

7u

8u

9u

NPV of Cost  to Serve ($ Million)

 

55 

Mean NPV $111 Billion 
TailVar 90 $184 Billion 



Option Everything $75 Adder 
Resource Build 
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Option Everything $75 Adder 
NPV Distribution 
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Mean NPV $92 Billion 
TailVar 90 $133 Billion 



What do you want to see? 

 Explore outputs from points in 1B? 
 Try other inputs? 
 Any results you would expect given 

different inputs? 
 Note: most real-time analysis will be done 

with 80 games to allow for results in a 
timely manner 
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Communicating Results 

 What would you advise for communicating 
results from the model effectively? 
 Are the graphs from the model you feel are 

helpful or misleading? 
 What policy questions would you 

recommend we take forward based on the 
outputs you have seen today? 
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