

## Emerging Technology Conservation for Low Carbon Futures

Charlie Grist Kevin Smit Tina Jayaweera

Conservation Resources Advisory Committee March 24, 2015





# Background

- Purpose: Very low or no carbon resource scenario
- Consider emerging generation & EE technologies
- For conservation, include technologies that are:
  - Beyond our existing supply curve
  - Available within next 10 years
  - Significant steps in efficiency/cost
- Ask: Input from the CRAC on what would be reasonable to include in this scenario
  - Collecting inputs by end of April
  - Need data and professional judgment





### Conservation Emerging Tech: Two Levels

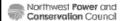
- ET Level 1: Available now, in Supply Curves
- ET Level 2: Potentially available after 5 years
  - Technologies on the horizon which could have major impacts if advancements occur
  - Not "reliable and available" now, but may warrant near-term actions to develop into "reliable" future resources



3



# Approach


- Broad-brush estimate of impacts of ETs
- Incorporate stock turnover constraints
- Use best available data (which may be sparse)
- No cost-effectiveness constraints
- Used for narrative purposes only (will not do full-RPM test)





#### ET Level 2 Measures

- Solid State Lighting
  - Quantum dots
  - Could cut lighting power in half
- CO2 Heat Pumps Space Heating
  - Could double heating efficiency
- CO2 Heat Pump Water Heaters
  - Could double efficiency
- Next advance in silicon wafer technology
  - Photonics
- Highly Insulated Dynamic Windows
- Optimized HVAC Controls
- Ultra-low Energy Buildings



5

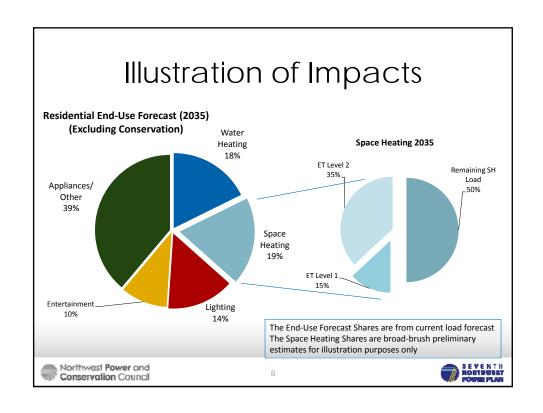


# What about Distributed Generation?

- Already includes distributed solar PV
  - 10-year forecast of cost and efficiency
  - Approximately 3500 aMW by 2035
  - Cost: \$110 \$200/MWh
  - Note: not part of EE supply curves
- Will also consider:
  - Fuel cells
  - Combined heat & power








## **ET Sources**

- Bonneville E3T & EE Technology Roadmap
- Energy Trust conservation potential study (2014)
- National labs
- NEEA
- Portland General Electric E3 Study (2013)
- Lazard's Levelized Cost of Energy Analysis Version 8.0
- Brattle: Advanced Energy Technologies for GHG Reduction
- CA Statewide ET Program
- IDDRI: Deep decarbonization US 2050 Report (2014)
- New Buildings Institute ZNE Database
- LBL-High DSM/DG Study Case Inputs for SPSC







### Questions

- Do we have the right Emerging Tech measure list?
  - Are we missing anything?
  - Should we exclude any?
- Do you have data sources for savings and cost?
- What is the max pace of each measure category?
  - What is a reasonable introduction date?
  - How fast could it be implemented?



9



### ET Level 2 Measure Table

| Emerging Tech<br>Level 2 Measure                        | Savings Estimates                             | Cost<br>Estimates                            | Life | Possible<br>start<br>Year | Pace              |
|---------------------------------------------------------|-----------------------------------------------|----------------------------------------------|------|---------------------------|-------------------|
| CO2 Heat Pump<br>Water Heater                           | 100% better than current<br>HPWH (to 4.2 cop) | High                                         | 15   | 2018                      | Moderate          |
| CO2 Heat Pump                                           | 50% savings in heating load                   | High                                         | 18   | 2020                      | Moderate          |
| Solid State Lighting (Quantum Dots)                     | 50% savings                                   | Low                                          | ?    | ?                         | ?                 |
| Silicon Wafer<br>Technology<br>(Photonics)              | Unknown                                       | If feasible, will likely become std practice | ?    | ?                         | If realized, fast |
| Highly Insulated<br>Dynamic Windows                     | Moderate improvement                          | High                                         | 40   | 2025                      | Slow              |
| HVAC Controls -<br>Optimized Controls<br>on all systems | 15% additional savings of HVAC loads          | Low                                          | 10   | 2020                      | Moderate          |
| Ultra-Low Energy<br>Buildings                           | 2-5 kWh/sqft savings                          | Low                                          | 30   | 2016                      | Very slow         |

Northwest Power and Conservation Council

10



# **Next Steps**

- Further develop ET Level 2 estimates
  - Cost and savings estimates will likely be at the high end of the supply curve costs.
  - Availability estimates –cost declines and performance increases based on secondary research
  - Pace most based on equipment turnover rates - Not available instantly, but accumulates over time



