Natural Gas Combined Cycle Combustion Turbine

Solar PV Utility-Scale

Reference Plants & Levelized Costs

Steven Simmons Northwest Power and Conservation Council May 28 2014

REFERENCE PLANTS

Capital Costs are Overnight and all costs in 2012 dollars

CCCT Reference Plant 1

Model & Technology Based on Siemens H-Class (SCC6 8000H – SGT6)							
Plant	Output & Costs	Output & Costs with Augmentation	Life Cycle Costs	Operation	Normalization		
Location Boardman OR	<u>Baseload Capacity</u> 392 MW	<u>Capacity with</u> 20MW Duct Firing <u>Augmentation</u> 412 MW	Economic Life 30 years	<u>Ramp Rate</u> 35 MW/min	<u>Capacity Adjustments</u> • <u>Elevation (-)</u> • Elec./Mech. Auxiliaries (-) • Inlet & Exhaust Losses (-) • Duct Firing Aug (+)		
<u>Earliest In-</u> <u>Service</u> 2014	<u>Heat Rate</u> 6,471 btu/kWh	<u>Heat Rate with Duct</u> <u>Firing</u> 6,531 btu/kWh	<u>Fixed O&M</u> 15.37 \$/kW/year	CO2 Emission Rate 792 lb/MWh	<u>Heat Rate Adjustments</u> •_Lower Heating to Higher Heating Value (+) • Elec./Mech. Auxiliaries (-) • Inlet & Exhaust Losses (-) • Duct Firing Aug (+)		
Configuration 1x1	<u>Capital Cost</u> 425 \$mm	<u>Capital Cost with</u> <u>Duct Firing</u> 433 \$mm	<u>Variable O&M</u> 3.27 \$/MWh	Water Usage 2,629 gpm* (*for 2x1)	<u>Capital Cost Adjustments</u> • Conversion to 2012 \$ (-) • Cost of Labor OR (+) • Plant Accessories (+) • Duct Firing (+)		
<u>Cooling</u> Wet	Capital Cost per kW 1,084 \$/kW	Capital Cost with Duct Firing per MW 1,052 \$/kW	Annual Life Cycle Degradation 0.39 % Capacity 0.31 % Heat Rate				
<u>Fuel</u> Natural Gas – GTN pipeline			<u>Levelized Cost of</u> Energy (2015) 56.88 \$/MWh				

Capital Costs are Overnight and all costs in 2012 dollars

CCCT Reference Plant 2

Model & Technology Based on Mitsubishi Heavy Industries J-Class (MPCP1 - M501J)							
Plant	Output & Costs	Output & Costs with Augmentation	Life Cycle Costs	Operation	Normalization		
Location Boardman OR	<u>Baseload Capacity</u> 449 MW	<u>Capacity with</u> 20MW Duct Firing <u>Augmentation</u> 469 MW	<u>Economic Life</u> 30 years	<u>Ramp Rate</u> 20 MW/min	<u>Capacity Adjustments</u> • <u>Elevation (-)</u> • Elec./Mech. Auxiliaries (-) • Inlet & Exhaust Losses (-) • Duct Firing Aug (+)		
<u>Earliest In-</u> <u>Service</u> 2018	<u>Heat Rate</u> 6,408 btu/kWh	<u>Heat Rate with Duct</u> <u>Firing</u> 6,459 btu/kWh	<u>Fixed O&M</u> 15.37 \$/kW/year	CO2 Emission Rate 784 lb/MWh	<u>Heat Rate Adjustments</u> •_Lower Heating to Higher Heating Value (+) • Elec./Mech. Auxiliaries (-) • Inlet & Exhaust Losses (-) • Duct Firing Aug (+)		
Configuration 1x1	<u>Capital Cost</u> 547 \$mm	<u>Capital Cost with</u> <u>Duct Firing</u> 556 \$mm	<u>Variable O&M</u> 3.27 \$/MWh	Water Usage 137.2 gpm* (*for 2x1)	<u>Capital Cost Adjustments</u> • Conversion to 2012 \$ (-) • Cost of Labor OR (+) • Plant Accessories (+) • Duct Firing (+)		
<u>Cooling</u> Dry	Capital Cost per kW 1,217 \$/kW	Capital Cost with Duct Firing per MW 1,186 \$/kW	Annual Life Cycle Degradation 0.39 % Capacity 0.31 % Heat Rate				
<u>Fuel</u> Natural Gas – GTN pipeline			<u>Levelized Cost of</u> Energy (2018) 60.32 \$/MWh				

4

Solar PV Update

Proposed Reference Utility Scale Solar PV Plant Update 05.26.14

5 MW ac using flat plate single crystalline modules mounted on single-axis trackers.

individual plants at scattered locations within the better solar resource areas

8.3 acres/MW solar pv (NREL) - so around 40 acres for a 5 MW plant

Solar PV Utility Scale Capital Cost Estimates & Projections (\$/kW ac - 2012 \$)

Recent Solar PV Power Purchase Agreements

- 1. Macho Springs Solar by First Solar
 - PPA with El Paso Electric at 57.80 \$/MWh
 - Includes New Mexico Production Tax Credit (w/o is approximately 84.90 \$/MWh)
 - Uses Thin Film technology
- 2. Recurrent Energy to build a 150MW solar pv plant in West Texas
 - PPA with Austin Energy for less than 50 \$/MWh
 - 2016 operation date would be largest solar pv plant in Texas

LEVELIZED COST OF ENERGY

8

Levelized Cost of Energy (LCOE) – a measure to compare costs of different generating technologies over plant life cycles - expressed in **\$/MWh** (or \$/kWh).

LCOE reflects the cost per unit of electricity for building, financing, operating, and maintaining a generating plant through the life cycle.

<u>Important assumptions include:</u>

- Capital costs Fuel costs
- Financing costs Emission costs
- O&M costs
- Utilization

9

Important factors for Solar PV LCOE estimates

- Capital Cost estimates the primary cost component for solar projects
- 2. Financing assumptions see #1
- 3. Capacity Factor based on location, how much electricity can the plant produce?
- 4. We see some PPA costs lower than published LCOE –why?
 - CA sites on distressed farm land
 - financing options ?
 - better locations (capacity factors)

Natural Gas Combined Cycle Combustion Turbine

- Fuel costs are significant 30 year foresight of natural gas prices suggests risk
- 2. Future emission cost?

The Council financial model - Micro Fin – was used to calculate LCOE. The model generates annual costs for debt and equity service, taxes (income and property), expenses (O&M, fuel) based on the inputs, calculates NPV and produces a levelized cost for the cost components.

Model assumptions include:

Solar PV	Ntrl Gas CCCT
IOU financed – 9.8% ROE, AT WACC 5.3%	IOU financed – 9.8% ROE, AT WACC 5.3%
Capacity Factor 26.4% (Boise ID area location)	Capacity Factor 85%
Life cycle degradation	Life cycle degradation
Investment Tax Credit – 30% until 2017, then 10%	Currently no CO2 emission penalty
Transmission – point to point, BPA 2014 Trans. Rate Schedule	Transmission – point to point, BPA 2014 Trans. Rate Schedule

- Compared to recently released LCOE values from
- EIA Annual Energy Outlook 2014
- Black and Veatch Report for NREL (Cost & Performance Data for Power Generation Technologies)

Levelized Cost of Energy \$/MWh Solar PV Utility Scale

IOU financing Capacity factor – Boise ID area

Levelized Cost of Energy \$/MWh Solar PV & Ntrl Gas CCCT – Year 2020

