Utility Scale Solar PV Cost

Steven Simmons Gillian Charles Northwest Power and Conservation Council GRAC October 16 2013

Outline

- 1. Summarize solar portion of the previous GRAC meeting June 20, 2013
- 2. New Capital Cost information and analysis
- 3. Proposed Capital Cost & O&M Forecast
- 4. Revised Performance Capacity Factors

GRAC Meeting 1

Solar in the news

- Rapid growth in solar development fueled by solar initiatives like DOE SunShot, Federal Tax Credits, State Renewable Portfolio
- Decline in installation costs along with gains in solar cell efficiency
- Solar PV manufacturer bankruptcies and layoffs
- Utility rate making and net metering controversies

GRAC Meeting 1

Recent Cost Report Summaries

- Energy Environment Economics (E3) Cost and Performance Review of Generation Technologies for WECC (Oct 2012)
- US Energy Information Administration (EIA) Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants AEO2013 (April 2013)
- Lawrence Berkeley National Laboratory (LBNL) Tracking the Sun V – An Historical Summary of the Installed Price of PV in the US 1998-2011
- Solar Electric Power Assoc (SEPA) Centralized Solar Projects Update Bulletin – Q1 2013

GRAC Meeting 1

Defined a Utility Scale PV Reference Plant with cost estimates and projections

- 20 MW_{ac} plant using crystalline modules mounted on single-axis trackers
- 3 year development cycle
- Cost estimates using recent cost reports and projects
- Overnight Capital Cost Estimate for 2012 construction \$4,270/kW_{ac} declining to \$2,888/kW_{ac} by 2020 and \$2525/kW_{ac} by 2025
- Finalize numbers at next GRAC here we are

Preliminary Solar PV Utility Scale Capital Costs (\$/ kW AC) for 20 MW Plant

New Solar Information

A number of very low priced power purchase agreements have recently been announced – mostly California municipals

Is there an emerging sweet spot for project sizes around 20MW – due to land costs, environmental siting, transmission and integration?

- City of Palo Alto
 - 3 projects starting in 2017 \$69/MWh
 - Central Valley and S. California locations, on distressed ag land, 20 to 40MW sizes
- City of Roseville
 - 32 MW Lost Hills Project at 75 \$/MWh
- Riverside Public Utilities
 - 2 solar pv projects at 70 \$/MWh
 - Projects 14 to 26 MW in size

New Solar Information

Lawrence Berkeley National Lab and National Renewable Energy Laboratory have new reports on Solar PV Costs <u>http://emp.lbl.gov/reports</u>

A few interesting tidbits:

- Crystalline Silicon systems converging with Thin Film Systems in terms of cost
- Large variation in project costs related to system configuration, size, geographic location
- O&M is estimated to be between \$20/kW year and \$40/kW year

New Capital Cost Estimate for Solar PV Reference Plant

- Same reference plant as before
 20 MW Crystalline Single Axis Tracker
- For 2012 starting point used data from reports EIA, E3, LBNL and SEPA
- Calculated a capital cost estimate for the Palo Alto PPA projects for 2016 – ranged from 1,908 to 2,460 in \$/kWac (\$2012)
- Ran a forward curve through the high case and followed E3 learning curve estimate
- Land size of a typical 20MW installation?

vation

Cost Estimate for Solar PV Reference Plant

- 20 MW Crystalline Single Axis Tracker with overnight capital costs (\$/kW ac) of
 - 4066 \$/kW in 2012 2794 \$/kW in 2015
 - 2224 \$/kW in 2020
 1936 \$/kW in 2030
- O&M from EIA 27.75 \$/kW-year and deescalating following capital cost curve
- Integration cost 1.15 \$/MW-hr based on BPA 2012/13 rate case
- Land size of a typical 20MW installation?

Performance Updates

This map was produced by the National Renewable Energy Laboratory for the U.S. Department of Energy

Since the last GRAC meeting...

- Defined Council's approach to solar capacity factor
- Updated capacity factors for <u>single-axis</u> <u>tracker</u> 20MW AC project for 16 sites
- Added capacity factors for <u>fixed-axis</u> 20MW AC project for 16 sites

Configuration Trends

LBNL released a report* on cost, performance, and price trends of utility scale solar (Sept 2013)

- Trackers generally yield a higher capacity factor than fixed-tilt (20% increase typical)
- Majority of trackers are single axis vs. dual axis

 ~10% increase in generation in a dual-axis system
 is often outweighed by the incremental cost

* Utility-Scale Solar 2012: An Empirical Analysis of Project Cost, Performance, and Pricing Trends in the United States (LBNL)

Capacity Factor - Council

There are different ways to define a capacity factor for a solar plant – here is the Council's approach:

Capacity Factor = Annual generation (kWh AC) ÷ System Rating (kw AC) ÷ 8,760 (hrs/yr)

AC – AC (Easier to compare against other resources)

Average over lifetime of plant (includes 0.5% annual degradation and 25-yr life)

Modeling Assumptions - 1

NREL System Advisor Model (SAM), version 2013.1.15				
Technology:	Solar PV (PVWatts system model)			
Location:	WECC Load Resource Areas (16)			
Nameplate Capacity:	20 MWac (25,974 kWdc)			
DC to AC Derate Factor*:	0.77			
Configuration:	Single-axis tracking, forced tilt at latitude			
Cells:	Crystalline silicon			
Performance Adjustment:	100% of annual output (no shading); 0.5% year-to- year decline			
Plant life:	25 years			
Weather data:	Typical/representative of long-term averages; not one full historical year, but a year comprised of 12 typical historical months (non-cumulative)			

* Includes all component derate factors, i.e. inverter, transformer, system availability, etc.

Utility-Scale Solar PV Performance (Single-Axis Tracking System)

Location	Load Resource Area	Capacity Factor (AC-AC rating basis)	
Burns, OR	E. WA/OR (1)	24.24%	
Fresno, CA	N. CA (2) 26.80%		
Daggett, CA	S. CA (3) 32.18%		
Spokane, WA	BC (4) 21.79%		
Boise, ID	S. ID (5) 25.24%		
Billings, MT	MT (6)	24.40%	
Rock Springs, WY	WY (7)	28.02%	
Alamosa, CO	CO (8)	31.76%	
Albuquerque, NM	NM (9)	30.75%	
Tucson, AZ	AZ (10)	30.84%	
Salt Lake City, UT	UT (11)	25.48%	
Ely, NV	N. NV (12)	29.79%	
Cut Bank, MT	AB (13)	24.80%	
Blythe, CA	Baja (14)	29.91%	
Las Vegas, NV	S. NV (15)	30.85%	
Medford, OR	W. WA/OR	22.86%	

Spokane **Cut Bank** Billings Burns Boise Medford Rock Springs Salt Lake Elv City Fresno Alamosa Las Vegas Albuquerque Daggett **Blythe** Tucson

Power and Conservation Council

Single-Axis Tracker: Monthly Annual Energy (MWh)

(First year output, each year thereafter degrades 0.5%)

Modeling Assumptions - 2

NREL System Advisor Model (SAM), version 2013.1.15				
Technology:	Solar PV (PVWatts system model)			
Location:	WECC Load Resource Areas (16)			
Nameplate Capacity:	20 MWac (25,974 kWdc)			
DC to AC Derate Factor*:	0.77			
Configuration:	Fixed-Axis, forced tilt at latitude			
Cells:	Crystalline silicon			
Performance Adjustment:	100% of annual output (no shading); 0.5% year-to- year decline			
Plant life:	25 years			
Weather data:	Typical/representative of long-term averages; not one full historical year, but a year comprised of 12 typical historical months (non-cumulative)			

* Includes all component derate factors, i.e. inverter, transformer, system availability, etc.

Utility-Scale Solar PV Performance (Fixed-Axis System)

Location	Load Resource Area	Capacity Factor (AC-AC rating basis)	
Burns, OR	E. WA/OR (1)	18.5%	
Fresno, CA	N. CA (2)	20.3%	
Daggett, CA	S. CA (3) 23.8%		
Spokane, WA	BC (4) 16.5%		
Boise, ID	S. ID (5) 19.1%		
Billings, MT	MT (6)	18.7%	
Rock Springs, WY	WY (7)	21.3%	
Alamosa, CO	CO (8)	23.7%	
Albuquerque, NM	NM (9)	23.5%	
Tucson, AZ	AZ (10)	23.2%	
Salt Lake City, UT	UT (11)	19.5%	
Ely, NV	N. NV (12)	22.4%	
Cut Bank, MT	AB (13)	19.0%	
Blythe, CA	Baja (14)	22.4%	
Las Vegas, NV	S. NV (15)	23.2%	
Medford, OR	W. WA/OR	17.5%	

Conservation

Fixed-Axis: Monthly Annual Energy (MWh)

(First year output, each year thereafter degrades 0.5%)

Single-Axis Tracker vs. Fixed-Axis

Location	Load Resource Area	Single-Axis Tracker CF	Fixed-Axis CF
Burns, OR	E. WA/OR (1)	24.24%	18.5%
Fresno, CA	N. CA (2)	26.80%	20.3%
Daggett, CA	S. CA (3)	32.18%	23.8%
Spokane, WA	BC (4)	21.79%	16.5%
Boise, ID	S. ID (5)	25.24%	19.1%
Billings, MT	MT (6)	24.40%	18.7%
Rock Springs, WY	WY (7)	28.02%	21.3%
Alamosa, CO	CO (8)	31.76%	23.7%
Albuquerque, NM	NM (9)	30.75%	23.5%
Tucson, AZ	AZ (10)	30.84%	23.2%
Salt Lake City, UT	UT (11)	25.48%	19.5%
Ely, NV	N. NV (12)	29.79%	22.4%
Cut Bank, MT	AB (13)	24.80%	19.0%
Blythe, CA	Baja (14)	29.91%	22.4%
Las Vegas, NV	S. NV (15)	30.85%	23.2%
Medford, OR	W. WA/OR	22.86%	17.5%

Single-Axis Tracker vs. Fixed-Axis

Single-Axis Tracker vs. Fixed-Axis

Solar Energy Industries Association (SEIA)

