Overview and Approaches to Ecosystem Restoration in the lower Columbia River and estuary

#### **Catherine Corbett<sup>1</sup> and Ian Sinks<sup>2</sup>**

#### <sup>1</sup>Lower Columbia River Estuary Partnership, Portland, OR <sup>2</sup>Columbia Land Trust, Vancouver, WA



### **Habitat Loss**

- Significant declines in emergent marsh and tidal swamp habitats
- Off-channel habitats cut off
- Reduction in flow, access to habitats
- Decreases in habitat complexity
- Changes in habitat forming processes
- Resulting in rearing, spawning, and refuge habitat loss for ESA listed species
- Restoration of these habitats should help improve these species' abundance and sustainability
- To the extent possible, we need to restore historic conditions on the ecosystem scale to achieve these goals

### **Restoration Goals**

#### 16,000 acres to be restored by 2010

- Updated to 19,000 acres by 2014
- From LCREP Management Plan and EPA Strategic Plan

#### Includes 13,000 acres of wetlands

• 3,000 acres of tidal wetlands along lower 46 miles



Culvert Removal, Young Creek



### **Restoration Projects**

#### Most projects have occurred in the floodplain and tributaries

**Passage Improvements** 

**Floodplain Reconnections** 



Habitat Enhancement

### **Funding Partners**

#### • NPCC/BPA:

- ca. \$4,000,000 (2003-2007)
- ca. \$6,000,000 (2008-2010)
- Pile Dike Program: ca. \$3,000,000 (2008-2010)

#### NOAA – Community Based Restoration:

- ca. \$666,250 (2004-2007)
- ca. \$350,000 (2008-2010)

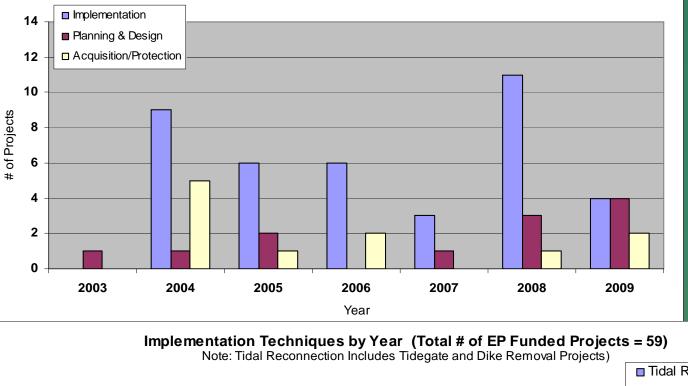
#### •NOAA – Marine Debris Removal:

- ca. \$100,000 (2008)

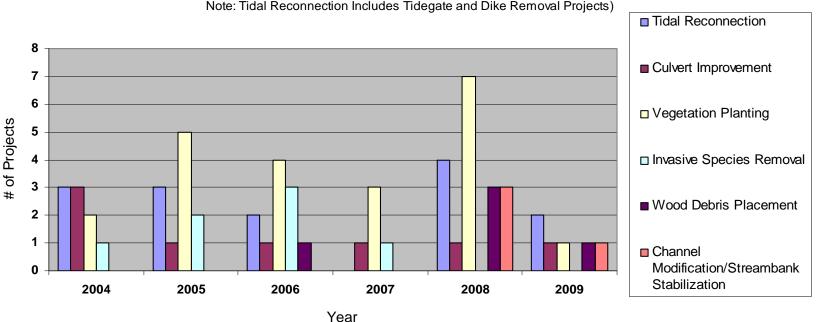
#### •EPA – Targeted Watershed:

- ca. \$700,000 (2003-2005)

#### •Corps of Engineers - Section 536:


– ca. \$2,000,000 since 2002

– e.g., Crims Island, Julia Butler Hansen Wildlife Refuge, Sandy River Delta, Vancouver Water Resources Center, etc.


### **Implementation Partners**

Estuary Partnership, Local Governments, Conservation Organizations (e.g., CLT), Watershed Councils, CREST, WA Fish Recovery Board, OWEB

#### Restoration Project Category By Year (Total # of EP Funded Projects = 59)



#### Inter-annual variability in rate & types of projects

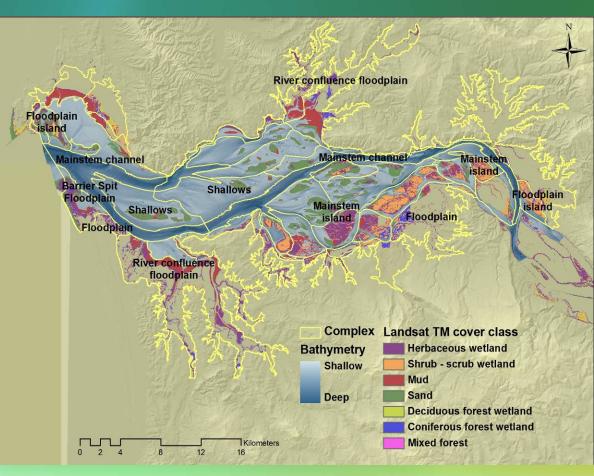


### **Opportunity-driven restoration**

- Bottoms-up approach, reactive to RFP
- Favors projects after concept is already developed, usually meeting a local need
- Favors sponsors with capacity to manage projects
- Favors project that can leverage funding from multiple sources (e.g., BPA, LCRFRB, OWEB)

   has helped promote tributary/floodplain focus
- Project significance often assessed on local level, but less clear on landscape scale
- To date, restoration efforts have been more fragmented than ecosystem-based
  - Connected to upstream restoration projects?
  - Focus on protecting entire life cycle?
  - Tie to water quality and food web?
  - Incorporate toxic contaminant sources and pathways?

## **Program Improvements**

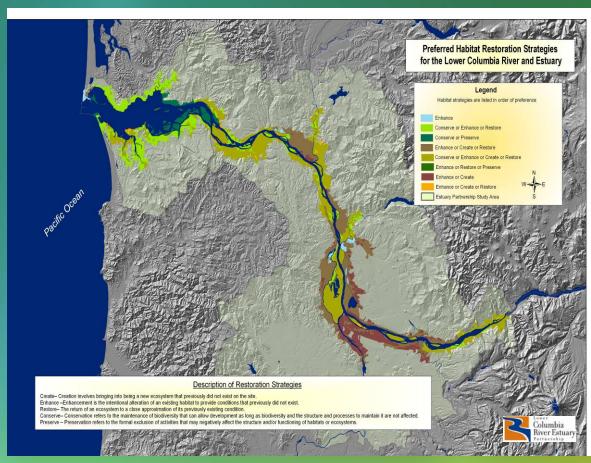

- Developing science and understanding of the complex system
- Experience leads to more informed project designs and decisions
- Improved monitoring efforts resulting in better decisions/designs
- Can lead to more strategic approach focusing on ecosystem scale restoration
  - Requires bi-state, central coordinating entity

### **Tools to inform Restoration**

- Classification—inc. Bathymetry, landcover
- Restoration Prioritization
- Shoreline Condition Inventory
- Ecosystem Status Monitoring
- Action Effectiveness Monitoring
- Reference Sites
- Cumulative Effects
- Meta-analysis
- Data Management
- Adaptive Management

### **CRE Ecosystem Classification**

- <u>Applications:</u>
- Prioritizing habitats for protection and restoration
  - Using landscape metrics
  - Number of patches
  - Types of patches
  - Edge density
    - Fragstats
    - McGarigal, K., S. A.
       Cushman, M.
       C. Neel, and E.
       Ene. 2002.
       Available from UMASS




From Burke et al. 2005 presentation @ ERF

#### **Habitat Restoration Prioritization Strategy**

- Two-tiered Scales from system-wide to project specific
- Tier 1 uses disturbance model (stressors)
  - provides method for comparing site function and structure at larger scales
  - Focuses on existing data
  - refine by updating/ adding new data





\*PNNL and Estuary Partnership

### **Digital Shoreline Condition Inventory**

 Digitized video of shoreline

•605 miles shoreline surveyed:

- •Jul 2005 Oct 2006
- Modified
   Shoreline:
   277 miles

•Natural Shoreline: 250 miles



### **Types of Monitoring/Research**

- Ecosystem condition status and trends
  - Ecosystem Monitoring Project
    - Assess condition of indicators of ecosystem condition & changes over time
    - Estuary Partnership, PNNL, NOAA Fisheries, USGS, UW
- Action Effectiveness Research

#### – Action Effectiveness Monitoring

- Assess effectiveness of individual restoration projects
- Estuary Partnership, CREST, NOAA Fisheries, CLT, Scappoose Bay Watershed Council, others

#### – Reference Sites

- Characterize conditions of various habitats to use as "targets" for restoration actions
- Estuary Partnership, PNNL, CREST

#### – Cumulative Effects of Restoration

- Assess effects of restoration on ecosystem-wide basis
- USACE, PNNL, NOAA Fisheries, CLT, CREST and others
- Critical Uncertainties Research

### **Ecosystem Monitoring Project**

- Estuary Partnership , NOAA, USGS, PNNL—funded by BPA
- Coordinated Habitat, Fish, and Prey Monitoring:
  - ✓ Vegetation monitoring (% cover along transects, species list, elevation)
  - ✓ Water quality (data loggers) and sediment (grain size along transects)
  - Fish sampling (species richness, abundance, CPUE, stock id, length, weight, stomach contents, otoliths for growth rates, marked/unmarked)
  - ✓ Fish prey (taxonomy, abundance, biomass, terrestrial versus aquatic origin)



### **Action Effectiveness Monitoring (AEM)**

- Research to determine effects of an action or suite of actions on fish performance and/or habitat conditions
- Assess ecosystem benefits and uncertainties affecting restoration success
- Support adaptive management of restoration by regional partners





### **Coordinated Regional Effort**

#### **AEM for individual restoration projects**

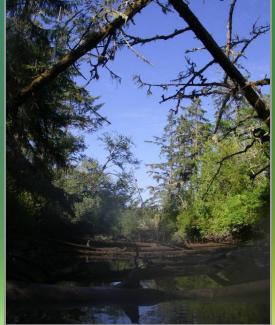
- NOAA Fisheries (multiple sites)
- CREST, Columbia Land Trust, Scappoose Bay Watershed Council, Ash Creek Forest Management, Parametrix
- Coordinated by the Estuary Partnership

#### **Cumulative Effects Study**

- Measuring hydrology, channel morphology, vegetation, fish presence and community structure, and flux of nutrients and organic matter
- Developing monitoring protocols (Roegner et al. 2008)

#### **Reference** Site Study

• Measuring hydrology, channel morphology, vegetation, elevation profiles, and sediment accretion


#### **Coordination to ensure:**

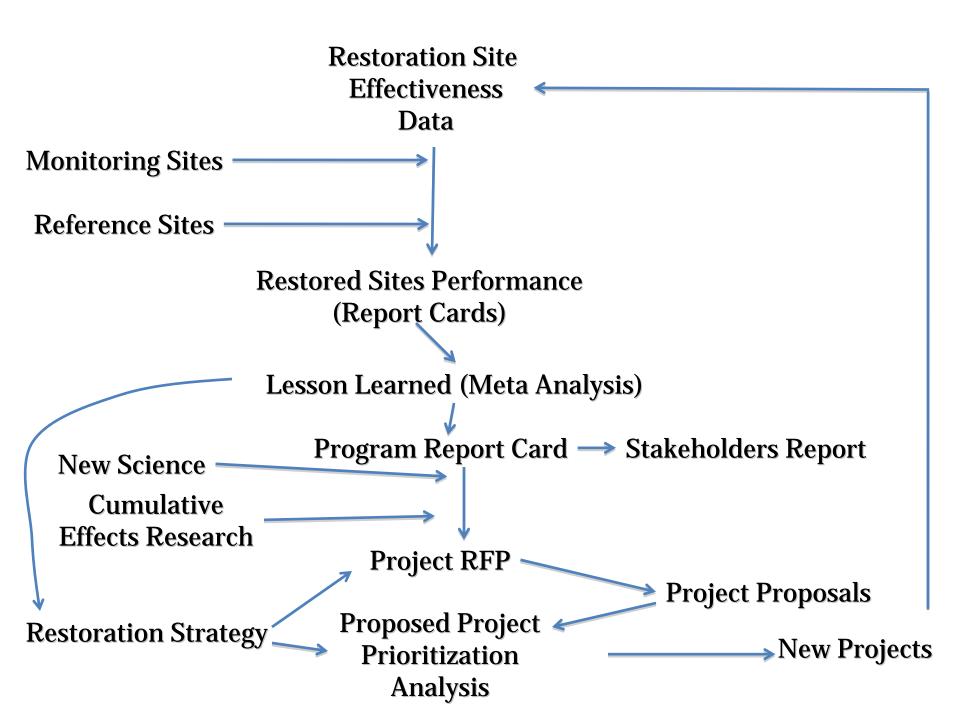
✓ Data are comparable across sites and time for similar types of actions and habitats

Results are scalable

### **Reference Sites Study**

- Goal use standard monitoring protocols to assess structure of suite of tidal freshwater wetland habitats
  - use these as an indicator of function and condition
- Provide a template of patterns and development rates that can be expected over time at restored sites
- Provide an endpoint of potential structure & function of restoration actions
- ~41 sites -> 4 sites in each of 8 reaches of estuary
- 3 major habitat types—emergent marsh,
   Sitka spruce swamp, and
   riparian forested wetland
- Cross-over with Ecosystem Monitoring Project




Sitka Spruce Swamp

# Meta Analysis Results Summary-Are the response variables trending in the

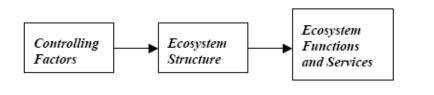
### **desired direction?**

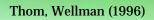
|                     | Photo<br>Point | Water<br>Temperature | Sediment<br>Accretion<br>Rate | Juvenile<br>Salmon<br>Presence |  |  |
|---------------------|----------------|----------------------|-------------------------------|--------------------------------|--|--|
| Crims Island        | Yes            |                      | Yes                           | Yes                            |  |  |
| Ft. Clatsop         |                | Cooler in<br>Summer  |                               | Yes                            |  |  |
| Johnson<br>Property | Yes            |                      |                               | Yes                            |  |  |
| Kandoll<br>Farm     | Yes            | Cooler in<br>Summer  | Yes                           | Yes                            |  |  |
| Vera Slough         | Yes            |                      |                               | No                             |  |  |

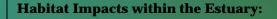
#### \*Programmatic Report Card



### **Restoration Project Implementation**





Integration of the experience of implementers within the estuary, including CLT, CREST, SBWC, USFWS, LCRWC, PC Trask, USFWS, DU and others.


# **Restoration Project Types**

Focus on restoring processes and structure that leads to quality habitat and functional benefits

- Hydrology
- Depth/Sediment Dynamics
- Access to Habitat
- Complexity/Diversity
- Habitat Type







- Significant declines in emergent
  marsh and tidal swamp habitats
- Off-channel habitats cut off

•

.

•

- Reduction in flow, access to habitats
  - Decreases in habitat complexity
  - Resulting in rearing, spawning, and refuge habitat loss for ESA listed species
  - **Restoration of these habitats should** help improve these species' abundance and sustainability

### Restoration of Controlling Processes: Hydrology





- Requires available land (Acquisition)
- Land use and community concerns
- Technical challenges
- Can be costly





### Restoration of Controlling Processes: Bathymetry/Hydrology



- Creative approached being investigated
- Land base is available
- Technical challenges
- Costly

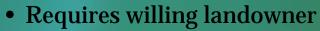




### **Restoration of Habitat Access**






#### **Partial Reconnection options exist**

- A compromise between interests
- Uncertain benefits site specific
- Offers flexibility and opportunity

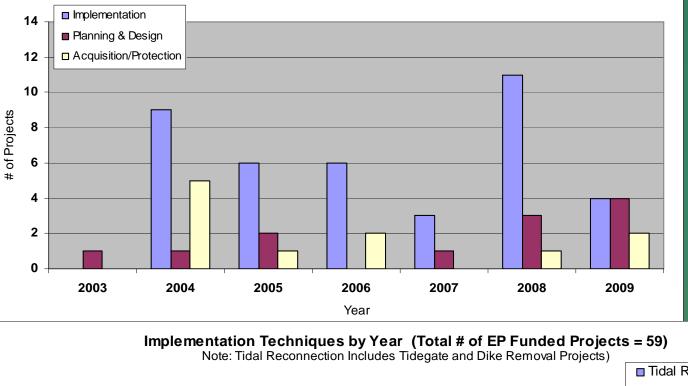
Access to Habitat best gained through hydrologic restoration

### **Restoration of Habitat Structure**

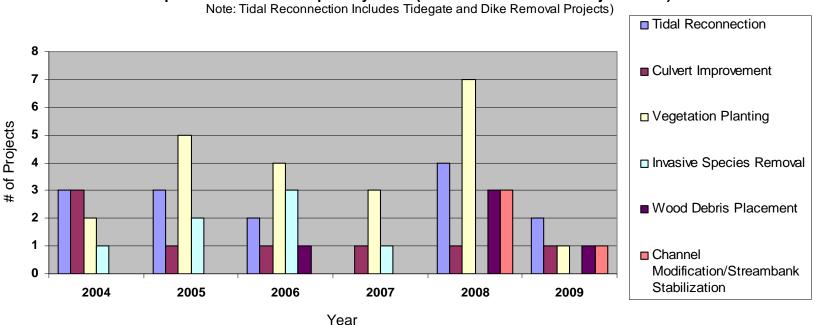




- Localized, scalable projects
- Variety of approaches








#### Restoration Project Category By Year (Total # of EP Funded Projects = 59)



#### Inter-annual variability in rate & types of projects



### **Issues Faced by Practitioners: Physical and Ecological Constraints**

- Floodplain Fragmentation
- Water Quality
- Channel Aggradation
- Channel connectivity
- Hydromodifications
- Invasive Species
- Infrastructure









### Issues Faced by Practitioners: Practical Concerns

- Securing Land
- Project Development
- Competing Goals
- Competing Interests
- Funding
- Design
- Outreach and community support
- Permitting
- Construction/Implementation
- Monitoring and Maintenance

### Issues Faced by Practitioners: Practical Concerns

| Project Activity                             | Year 1 |    |    | Year 2 |    |    | Year 3 |    |    |    |    |    |
|----------------------------------------------|--------|----|----|--------|----|----|--------|----|----|----|----|----|
|                                              | Q1     | Q2 | Q3 | Q4     | Q1 | Q2 | Q3     | Q4 | Q1 | Q2 | Q3 | Q4 |
| Landowner Contact                            |        |    |    |        |    |    |        |    |    |    |    |    |
| Conceptual Project Design                    |        |    |    |        |    |    |        |    |    |    |    |    |
| Grant Funding - Application                  |        |    |    |        |    |    |        |    |    |    |    |    |
| Grant Contracting                            |        |    |    |        |    |    |        |    |    |    |    |    |
| Outreach                                     |        |    |    |        |    |    |        |    |    |    |    |    |
| Acquisition - Appraisal                      |        |    |    |        |    |    |        |    |    |    |    |    |
| Acquisition - Due Diligence                  |        |    |    |        |    |    |        |    |    |    |    |    |
| Acquisition - Closing                        |        |    |    |        |    |    |        |    |    |    |    |    |
| Project Design - 30%                         |        |    |    |        |    |    |        |    |    |    |    |    |
| Permitting - Regulatory Approval             |        |    |    |        |    |    |        |    |    |    |    |    |
| Final Design                                 |        |    |    |        |    |    |        |    |    |    |    |    |
| Construction Contracting                     |        |    |    |        |    |    |        |    |    |    |    |    |
| Construction Implementation                  |        |    |    |        |    |    |        |    |    |    |    |    |
| Post-Construction Monitoring and Maintenance |        |    |    |        |    |    |        |    |    |    |    |    |

### **Practical Options for Success**

- Think long term
- Integrate strategic planning and prioritization
- Approach projects in phases
- Be willing to invest in Development with the understanding that not all project come to fruition
- Build flexibility into funding structure
- Support technical needs
- Community outreach on a regional scale
- Community outreach on a local, project-specific scale
- Invest in long-term operation and maintenance for restoration projects

Contacts for More Information: Catherine Corbett (503) 226-1565 ext 240, corbett@lcrep.org Ian Sinks (360) 696-0131, isinks@columbialandtrust.org AND:

Blaine D. Ebberts (503) 417-7567, blaine.d.ebberts@usace.army.mil Micah Russell (503) 325-0345, mrussell@columbiaestuary.org