Jennifer Anders Chair Montana

> Tim Baker Montana

Guy Norman Washington

Patrick Oshie Washington

Richard Devlin Vice Chair Oregon

> Ted Ferrioli Oregon

> > Jim Yost Idaho

Jeffery C. Allen Idaho

June 4, 2019

MEMORANDUM

TO: Power Committee Members

FROM: Massoud Jourabchi, Manager Economic Analysis

SUBJECT: Forecast Load with Price Effects and Forecast Load with Frozen Efficiency, Climate Change impacts on load forecasting

BACKGROUND:

- Presenter: Massoud Jourabchi
- Summary: In preparation for the 2021 Power Plan, staff will be providing the Power Committee a series of presentations on different aspects to developing the Plan. In this presentation, I will provide an overview of the methods used in Council's long-term load forecasting. I will present the analytical steps to create load forecast from consumer perspective Price-effect load forecast, and Frozenefficiency load forecast used in Council's resource planning process. I will also be discussing how climate change is anticipated to impact loads.
- Relevance: A 20-year load forecast is a fundamental component of the power plan and is required by the Northwest Power Act.
- Workplan: A.3.1. Develop Base Load Forecast: Price Effects & Frozen Efficiency Forecast for 2021 Power Plan

Alternative Load Forecast Concepts

- Three different but related load forecasts are produced for use in the Council's resource planning process. The first of these forecasts is called a "price-effect" demand forecast, which is the forecast that has been presented up to this point.
- The price-effect forecast reflects customers' choices in response to electricity and fuel prices and technology costs, without any new conservation resources. However, expected savings from existing and approved codes and standards are incorporated in the price-effect forecast, consequently reducing the forecast and removing the potential from the new conservation supply curves.
- To eliminate double-counting the conservation potential, the load-forecasting model produces another long-term forecast, labeled Frozen-Efficiency forecast.

Comparison and Range of the Two Energy Forecasts from the 7th Plan analysis (aMW)

Forecast	Economic Scenario *	2016	2021	2035	AAGR 2016-2035
Price-effect	Low	20,783	21,115	22,916	0.5%
Price-effect	High	21,427	22,395	26,073	1.0%
Frozen Efficiency	Low	20,781	21,117	22,976	0.5%
Frozen Efficiency	High	21,436	22,466	26,620	1.1%
By 2021, delta betw By 2035 the delta i	ween Frozen Effici ncreases to 60-550	ency and Price-) aMW	effect forecasts is be	etween 2-71 aMW d	lepending on the scen
However, by 2021 *- in the 7 th Plan re	the forecasts will l port we did not sh	be updated. ow medium ran	ge of forecast, to hig	ghlight range of unc	ertainty. THE 2021 NORTHW
					POWER

Once Con we now	servati can pr	ion Ta roduce	rgets a e the Th	re dete hird For	rmined ecast
Forecast	Scenario	2016	2021	2035	AAGR 2016-2035
Price-effect	Low	20,783	21,115	22,916	0.5%
Price-effect	High	21,427	22,395	26,073	1.0%
Frozen Efficiency	Low	20,781	21,117	22,976	0.5%
Frozen Efficiency	High	21,436	22,466	26,620	1.1%
Sales (FE net of EE)	Low	20,611	19,720	18,632	-0.5%
Sales (FE net of EE)	High	21,257	21,006	21,909	0.2%
					THE 2021 NORTHWE POWER PL

	2020-2029	2030-2039	2040-2049	2020-2029	2030-2039	2040-2049
	Winter Peak	Winter Peak	Winter Peak	Summer Peak	Summer Peak	Summer Peak
- CanESM2	34,407	35,306	37,803	31,403	34,834	36,323
- CCSM4	34,624	36,031	37,351	31,180	33,955	37,583
- CNRM	34,417	35,906	38,062	31,267	33,333	39,337
I-CSIRO	35,969	37,213	40,586	32,653	36,919	40,380
5- GDFL	35,136	37,117	40,510	33,557	36,057	41,485
5- HadGEM2-CC	34,078	36,268	38,203	31,512	32,699	35,873
'-HadGEM2-ES	34,449	35,952	38,231	30,964	32,849	37,536
3-inmcm4	33,826	35,421	37,722	32,591	35,027	40,444
- IPSL-CM5-MR	35,236	37,435	40,166	33,119	35,012	42,143
0-Miroc5	35,592	36,200	37,689	31,768	33,271	38,795
	2020-2029	2030-2039	2040-2049	2020-2029	2030-2039	2040-2049
	Winter Peak	Winter Peak	Winter Peak	Summer Peak	Summer Peak	Summer Peak
lighest Peak Load	35,969	37,435	40,586	33,557	36,919	42,143
CM	4-CSIRO	9 - IPSL-CM5-MR	4-CSIRO	5- GDFL	4-CSIRO	9 - IPSL-CM5-MF

