

September 28, 2022

MEMORANDUM

TO: \quad Fish and Wildlife Committee Members

FROM: Maureen Hess

SUBJECT: Update on genetic monitoring tools

BACKGROUND:

Presenters: Dr. Shawn Narum - Senior Scientist/Lead Geneticist, Columbia River Inter-Tribal Fish Commission
 Dr. Jon Hess - Senior Fisheries Geneticist, Columbia River Inter-Tribal

Fish Commission
Matt Campbell - Fisheries Genetics Program Coordinator, Idaho Department of Fish and Game

Summary: Presenters will update the Committee on genetic monitoring tools and applications that provide critical information to assist fisheries management and conservation efforts in the Columbia River Basin, with particular emphasis on the value that parentage-based tagging and genetic stock identification tools provide to the region.

Relevance: Genetic monitoring tools and their applications address multiple areas of the 2014 Columbia River Basin Fish and Wildlife Program and the 2020 Addendum, in particular: the Adaptive Management section of the Program (Part 4) and the Fish Propagation Including Hatchery Programs Strategy.

Workplan: Fish and Wildlife Division Workplan; Program Implementation and Performance

Background: In 2009, CRITFC and IDFG staff first presented to NPCC the concept of using genetic tools to monitor distinct stocks of salmonids in the Columbia River Basin. The overarching goal was to monitor stock-specific abundance, run-timing, and harvest to contribute to fisheries management and rebuilding fish runs in the Columbia River Basin. Two BPA funded projects (CRITFC 2008-907-00; IDFG 2010-031-00) enabled this concept to be developed into ongoing studies to identify stock of origin of salmonids at fixed locations (Bonneville Dam and Lower Granite Dam) or intercepted in mainstem fisheries. An update on progress was delivered to the NPCC Fish Tagging Forum in 2012 that summarized the development of genetic resources, empirical testing/demonstration, and results for longterm status and trend monitoring of steelhead and Chinook Salmon stocks. The concepts described initially in 2009, and efforts to improve and expand these genetic tools since then, have evolved into a broadly implemented genetic monitoring program for salmonids in the Columbia River Basin. This includes use of two powerful approaches to identify hatchery-origin fish with Parentage Based Tagging (PBT) and naturalorigin fish with Genetic Stock Identification (GSI).

More Info:

- Project \#2008-907-00 - Genetic Assessment of Columbia River Stocks
- Project \#2010-031-00 - IDFG Genetic Monitoring of Snake River Salmon and Steelhead stocks
- Fish Tagging Forum

Genetic Monitoring of Salmonids in the Columbia River Basin

Shawn Narum \& Jon Hess
Columbia River Inter-Tribal Fish Commission (CRITFC)

Matt Campbell
Idaho Department of Fish \& Game (IDFG)

Genetic Monitoring \& Research to Support Recovery of Fisheries

Applied Genetics Research in Salmonids

- Genetic monitoring of distinct stocks
- Return timing and abundance of stocks (hatchery \& natural)
- Estimating harvest of stocks (hatchery \& natural)
- Effects of hatchery programs on wild stocks
- Estimate fitness with genetic pedigrees
- Monitor effects on heritable phenotypic variation
- Maintain adaptive genetic variation
- Adaptation to local environments
- Genomic basis for diverse phenotypic traits

Bonneville Dam:

In-season estimates of abundance/timing at Bonneville Dam for specific stocks of Chinook, steelhead, sockeye; biweekly reports sent to co-managers
*PBT = Parentage Based Tagging

Period 1
Period 2
Period 3
Period 4

*GSI = Genetic Stock Identification

Areas of Applied Research in Salmonids

- Genetic monitoring of distinct stocks
- Return timing and abundance of stocks
- Estimating harvest of stocks
- Effects of hatchery programs on wild stocks
- Pedigrees to estimate fitness
- Track heritable phenotypic variation
- Maintain adaptive genetic variation
- Adaptation to local environments
- Genomic basis for diverse phenotypic traits

Types of Hatchery Programs

- Harvest augmentation - Fish for harvest (segregated)
- Supplementation - Prevent extirpation, rebuild natural production (integrated)
- Reintroduction - Restore extirpated populations (outside stocks) Effects of hatchery programs on wild/natural stocks?

Pedigree Analyses to Track Offspring \& Fitness

- Tissue sample collected from parents (non-lethal) to identify offspring
- Samples genotyped for parentage analyses

Effects of Hatchery on Natural Population

- Key Question: Is reproductive success reduced when hatchery origin fish mate with natural fish?
- Supplementation with highly integrated broodstock may have limited effects on natural populations (e.g., Johnson Cr.)
- Other recent studies suggest NOR broodstock may reduce negative effects (e.g., Waters et al 2015; Ford et al. 2016)

Natural-origin broodstock program - Johnson Cr, ID

$\rightarrow \mathrm{HxH}-\mathrm{HxN}$

Integrated vs. Segregated Programs

- Integrated programs may have low risk to natural populations
- Few programs with high percent of natural origin broodstock

Example of 23 Chinook Hatcheries in Columbia R.

75

Areas of Applied Research in Salmonids

- Genetic monitoring of distinct stocks
- Return timing and abundance of stocks
- Estimating harvest of stocks
- Effects of hatchery programs on wild stocks
- Estimate fitness with genetic pedigrees
- Monitor effects on heritable phenotypic variation
- Maintain adaptive genetic variation
- Adaptation to local environments
- Genomic basis for diverse phenotypic traits

Genome Scans for Phenotypic Traits

Run-timing for three major lineages of Chinook in Columbia R.

Chinook salmon
Adult Migration Timing (early vs. late)

Markers to Validate Association

28 SNPs from GREB1L/ROCK1 region

chromosome Ots28

Genotypes explain 50-80\% of variation in run-timing

Willis et al. 2021; Evol. Appl.

Age at Maturity: 1-ocean vs. 2-ocean steelhead

Genome Scans to Genotyping

Enables monitoring of many individuals

GT-seq; Campbell \& Narum 2015, Mol. Ecol. Res.

Maintain genetic diversity that allows salmonid populations to persist

Conservation \& Recovery Goals

Short-term: single events (e.g., flood or drought)

Long-term: climate change (frequent stochastic events)

IDFG Genetic Monitoring of Snake River Salmon and Steelhead stocks: 2010-031-00

Matthew Campbell (IDFG)
Fisheries Genetics Program Coordinator

Presentation to Fish and Wildlife Committee Members (NPCC)
Tuesday, October $4^{\text {th }}, 2022$

Primary Collaborators: Shawn Narum, Jon Hess Columbia River Inter-Tribal Fish Commission

Co-collaborators:
Idaho Power Company

Lower Snake River Compensation Plan (USFWS)
Pacific States Marine Fisheries Commission

Major achievements during proof-of-concept period:

Parentage Based Tagging-

- Accuracy- PBT is accurate and matched CWT assigments CWTs (Steele et al 2013)
- Integration- Same genetic marker panel for GSI and PBT
- Tag rates- High realized tag rates 2009 - Present (>95\%)
- Utility- Powerful technology to address multiple management and research questions throughout the CRB

fatupe

घ

Parentage-Based Tagging: Reviewing the Implementation of a New Tool for an Old Problem

Major achievements:

Genetic Stock Identification-

- Comprehensive GSI SNP genetic baselines for both species
- Chinook Salmon: Sample collections represent 31 TRT pops, 6 Genetic Stocks spanning 5 MPGs
- Steelhead: Sample collections represent 23 TRT pops, 10 Genetic Stocks spanning 6 MPGs
- Baselines incorporated into Columbia River genetic baselines (CRITFC)

Major achievements:

Both Projects-

- FishGen Database

- Additional funding from PSMFC

FishGen

All PBT/GSI baselines available on FishGen

- ~500,000 Chinook Salmon
- ~150,000 Steelhead
- Standardized genetic marker panels
- Publicly available

Following completion of proof-of-concept phase of these projects, managers throughout the Columbia River Basin incorporated GSI and PBT for long-term status and trend monitoring of steelhead and Chinook Salmon stocks

Some brief examples:

\checkmark Monitoring effectiveness of integrated hatchery programs

- Estimate PNI
- Adult-to-adult productivity

Calculate and report annual estimates of Proportion of Natural Influence: PNI $\approx \mathrm{pNOB} /(\mathrm{pNOB}+\mathrm{pHOS})$

McCall Fish Hatchery

Sawtooth Fish Hatchery

Pahsimeroi Fish Hatchery

Lyons Ferry Fish Hatchery
\checkmark Summarize life-history and genetic diversity of steelhead and spring/summer Chinook Salmon that are detected at instream pit tag detection systems in the Snake River basin

- Separate wild and hatchery fish
- Provide genetic sex and estimates of genetic diversity and structure
- Provide GSI assignments of undetected fish

Proportions of undetected steelhead by genetic stock by year for spawn years 2010-2019

REPORT TO NOAA FISHERIES FOR 5-YEAR ESA STATUS REVIEW: SNAKE RIVER BASIN STEELHEAD AND CHINOOK SALMON POPULATION ABUNDANCE, LIFE HISTORY, AND DIVERSITY METRICS CALCULATED FROM IN-STREAM PITTAG OBSERVATIONS (SY2010-SY2019)

January 2020
IPTDSW (In-stream PIT-tag detection systems workgroup)

Ryan Kinzer (NPT), Rick Orme (NPT), Mathew Campbell (IDFG), John Hargrove (PSMFC/IDFG),
Kevin See (Biomark ABS)

Some examples of projects that are generating status and trend monitoring data:
\checkmark Estimate the wild and hatchery stock composition of adult steelhead harvested in mainstem fisheries extending from the Lower Columbia River upstream to the Snake Basins of Idaho, Oregon and Washington.

Multi-agency effort to estimate stock composition of sport and tribal harvested steelhead in the Columbia River corridor

Stock composition in Zone 6 harvest

Example: VSP Monitoring in the Snake River Basin

VSP stands for viable salmonid population. NOAA uses four key parameters to evaluate a population's viability

- Abundance
- Population growth rate
- Spatial Structure
- Diversity

These parameters can be estimated annually for the entire Snake River basin using a comprehensive sampling and genetic program at Lower Granite Dam

VSP Monitoring @LGR Collaborators

Bonneville Power Administration (BPA); projects:
\checkmark 1990-055-00 Idaho Steelhead Monitoring and Evaluation Studies
\checkmark 1991-073-00 Idaho Natural Production Monitoring and Evaluation Program
\checkmark 2010-026-00 Chinook and Steelhead Genotyping for Genetic Stock Identification (GSI) at Lower Granite Dam

OWER SNAKE RIVER
OMPENSATION PLAN
thechery Proman

\checkmark 2010-031-00 Snake River Chinook and Steelhead Parental Based Tagging (PBT)

- Idaho Office of Species Conservation (IOSC)
- Idaho Power Company (IPC)
- Northwest Power and Conservation Council (NPCC)
- Pacific States Marine Fisheries Commission (PSMFC)
- Quantitative Consultants, Inc. (QCI)
- U. S. Fish and Wildlife Service, Lower Snake River Compensation Program (LSRCP)
- National Marine Fisheries Service (NMFS)

Lower Granite Dam

- Facilities and programs in place Adult Trapping to representatively sample fish during adult and juvenile migrations
- 3,500 - 4,500 adults sampled annually
- 1,500-2,500 juveniles sampled annually

Adult Fish Ladder

LGR Bio-sampling

Tissue (Genetics and Sex)

*Trapping date also recorded

Wild Abundance by Genetic Stock

Wild versus Hatchery Determination

Am I hatchery or wild?

Some hatchery fish are unclipped/marked:

- Intentionally released
- Miss-clipped
- CWT/PIT shed
- CWT/PIT undetected

NOAA Requires accurate

Phenotypic wild

estimates of wild
abundance!!!!!

Wild versus Hatchery Determination

Example (SY2017): PBT makes a difference!!!!!!!

Species	Without PBT	With PBT	Difference	$\%$
Steelhead	19,668	15,576	4,092	20.4%
Chinook	9,037	5,793	3,244	35.9%

Wild Escapement - Genetic Stock and saltwater age

Wild juvenile emigration - Genetic Stock by Sex

1. Major accomplishments achieved for all original objectives
2. Demonstration of comprehensive utility of these genetic technologies for addressing conservation and management issues of importance to the Council and state, tribal and federal fisheries managers

Reasons to be excited about the future?

- Improvements in genetic markers and genetic baselines
- John Hargrove continued work to improve and summarize GSI baseline for steelhead (manuscript in prep.)
- Currently working on improvements to Chinook Salmon GSI Baseline

| Panel | GRROND | IMNAHA | LOWCLWR | LOWSALM | LSNAKE | MFSALM | SFCLWR | SFSALM | UPCLWR | UPSALM |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| v3.1-176 SNPs | 0.67 | 0.68 | 0.66 | 0.52 | 0.41 | 0.90 | 0.89 | 0.91 | 0.93 | 0.74 |
| v4.0-176 SNPs | 0.66 | 0.58 | 0.58 | 0.56 | 0.41 | 0.87 | 0.88 | 0.86 | 0.91 | 0.72 |
| v4.0-334 SNPs | 0.80 | 0.74 | 0.71 | 0.62 | 0.49 | 0.92 | 0.90 | 0.99 | 0.95 | 0.86 |
| v4.0-334 SNP/MH | 0.85 | 0.77 | 0.73 | 0.64 | 0.56 | 0.93 | 0.91 | 0.99 | 0.96 | 0.88 |
| Improvement | $\mathbf{0 . 1 9}$ | $\mathbf{0 . 0 9}$ | $\mathbf{0 . 0 7}$ | $\mathbf{0 . 1 2}$ | $\mathbf{0 . 1 5}$ | $\mathbf{0 . 0 3}$ | $\mathbf{0 . 0 2}$ | $\mathbf{0 . 0 8}$ | $\mathbf{0 . 0 3}$ | $\mathbf{0 . 1 3}$ |

Self-assignment rates (proportion correct to genetic stock)

Grandparentage Testing

Thomas Delomas
Quantitative Geneticist Kingston, RI
US Department of Agriculture (USDA) Agricultural Research Service (ARS)

North American Journal of
Fisheries Management
ARTICLE
Grandparent inference from genetic data: The potential for parentage-based tagging programs to identify offspring of hatchery strays
Thomas A. Delomas Matthew Campbell
First published: 27 October 2021 | https://doi-org.libproxy.boisestate.edu/10.1002/nafm. 10714

- Benefits of PBT technology

$>$ PBT also can be used to identify the origin of straying hatchery fish

Hinrichsen et al (2016)-"In the South Fork Salmon River application, there were 340\% more PBT recoveries than CWT recoveries, leading to greater precision in release-specific values of p from maximum likelihood estimation."

- NOAA wants this information

> Status assessments for ESA-listed salmon populations in the Snake River and Columbia River basins, require reliable estimates of the proportion of hatchery-origin spawners on the spawning grounds, or pHOS (McClure et al. 2003)
> However, pHOS is actually just a surrogate for what geneticists and managers would really like to monitor:

>Gene flow only occurs if hatchery fish successfully mate with wild fish and produce offspring!

PBT Parent Baseline

- What are we testing?
> With sufficient genetic markers we can extend PBT to identify grandparent-grandchild relationships

- Current working on 2 POF studies
- We will be testing wild steelhead adults captured at Lower Granite Dam (samples in hand, largescale POC)
- But the technology can be applied at any life-stage
- Both juvenile and adult sampling is already conducted on many streams throughout the Snake River Basin

Jon's up next!!!

Chinook salmon

Steelhead

Sockeye salmon

Coho salmon

COUNTING FISHES FOR MANAGEMENT

Chinook

Sockeye

Coho

COUNTING FISHES FOR MANAGEMENT

COUNTING FISHES FOR MANAGEMENT

COUNTING FISHES FOR MANAGEMENT

COUNTING FISHES FOR MANAGEMENT

COUNTING FISHES FOR MANAGEMENT

COUNTING FISHES FOR MANAGEMENT

GENETIC STOCK ID BASELINES

Utility to assign natural origin fish

Genetic Stock Identification (GSI)

Parentage Based Tagging (PBT)

- Complete baselines above Bonneville since 2013

Chinook spawning hatcheries

Steelhead \& Coho spawning hatcheries

Parentage Based Tagging (PBT)

- Complete baselines above Bonneville since 2013

Chinook spawning hatcheries

- ~ 14,000 broodstock per year
- ~ 28 million juveniles released
- PBT program 'tags' ~ 86\%

Above Bonneville Dam

- ~21,000 broodstock per year
- ~ 41 million juveniles released
- PBT program 'tags' ~ 100\%

Steelhead \& Coho spawning hatcheries

Below Bonneville Dam

- ~ 12 million juveniles released
- PBT program 'tags' $\sim 4 \%$
$0^{1530} \quad 60$ "

Above Bonneville Dam

- ~ 8 million juveniles released
- PBT program 'tags' ~ 58\%

Parentage Based Tagging (PBT)

- Complete baselines above Bonneville since 2013

Sockeye reintroduction

Sockeye

Above Bonneville Dam

- ~ 10,000 adult transplants per year
- PBT program 'tags' ~50\%

Coded Wire Tag and Parentage-Based Tag

Comparisons of recoveries in the chinook fisheries of 2018

Coded Wire Tag and Parentage-Based Tag

Comparisons of recoveries in the chinook fisheries of 2018

250

GENETIC APPLICATIONS IN FISHERIES MANAGEMENT

Spring Chinook Test Fishery

Spring Chinook Test Fishery

Chinook Salmon hatchery broodstocks

STOCK ID OF MAINSTEM HARVEST
 Stock specific harvest annually since 2009

In-season analyses of stocks (since 2017)

Results provided at two-week intervals throughout run

Hatchery clipped adult-sized Chinook salmon passing Bonneville Dam through June 15, 2022.

