Guy Norman Chair Washington

KC Golden Washington

> Jim Yost Idaho

Jeffery C. Allen Idaho

Doug Grob Vice Chair Montana

Mike Milburn Montana

Ginny Burdick Oregon

Louie Pitt, Jr. Oregon

June 29, 2022

MEMORANDUM

- TO: Committee Members
- FROM: Leslie Bach
- SUBJECT: Examples of climate change considerations in project planning and implementation

BACKGROUND:

- Presenters: Matt Boyer, Montana Fish Wildlife and Parks, Gary James, Confederated Tribes of the Umatilla Indian Reservation, Ethan Crawford, Washington Department of Fish and Wildlife, Patrick Murphy, Idaho Department of Fish and Game
- Summary: The panel will discuss how climate change considerations are being incorporated into ongoing project development and implementation. They will provide information from a diversity of geographies and different types of project actions. The presentation will cover both the potential effects of climate change on physical and biological conditions, and some of the adaptation mechanisms employed by managers to address those effects.
- Relevance: The Climate Change strategy of the 2014/2020 Program directs the Council and others to consider climate change in all aspects of the program program planning, project development, and project and program implementation and assessments. It calls for a better understanding of how the effects of climate change may impact mitigation and restoration efforts implemented under the Program, and directs project sponsors to consider and plan for different climate change scenarios that could affect their work. The Program's Public Engagement

Strategy calls for the Council to inform and involve the public on topics related to the Program through a variety of media formats.

Background: Projections for future climate in the Pacific Northwest suggest warming temperatures and changes in precipitation regimes. Warmer temperatures are expected to lead to diminished snowpack, and snowmelt will likely occur earlier in the season relative to current conditions. These changes will result in earlier and increased peak flows and lower summer low flow conditions and higher stream temperatures. Implications for fish and wildlife include altered migration timing and increased channel or redd scouring in the winter and reduced water supply and habitat availability in the summer.

In the most recent project review processes, the project proposal request included specific questions regarding potential implications of climate change on project planning and implementation. Project sponsors addressed these questions in their proposals, providing an excellent summary of expected climate change conditions and implications across the Columbia Basin. The specific questions addressed were: 1) How will climate change potentially impact your project in the future and what information sources were used to identify those impacts; 2) What adaptation measures were taken to adjust your project for these impacts; and 3) How could you evaluate the success of your adaptation measures to inform future projects? This presentation will provide a sample of the responses provided during the review process and the ongoing efforts to address climate change effects on projects.

Strategies for Climate Change Adaptation and Mitigation

NPCC Fish & Wildlife Committee Meeting 6 July 2022

Habitat Protection

Cold Water Refuge

Hydro Operations

Monitoring and Applied Research

confluence of the North and Middle forks of the Flathead River

Habitat Protection - Acquisition

Whitefish Lake Watershed Project
21 Section (~14,000-acre) acquisition
BPA funded portion protects 3,200
acres of Swift Cr. riparian corridor

Habitat Protection
- Conservation easement

River to Lake Initiative

- 45 projects (10 BPA funded)
- 29% of mainstem Flathead River protected (7 miles)
- 49% of ecological floodplain protected (5,000 acres)
- 4 miles of restoration projects completed
- 51% of wetlands protected
- Important shallow aquifer protected

Habitat Protection - Conservation easement

Foys Bend Fisheries Conservation Area

Habitat Protection - Legislative action

Transbothadary Flathead River

Habitat Protection - Legislative action

MENN

coal mining in the Elk River valley, BC, Kootenay/ai watershed

Habitat Protection - Legislative action

Memorandum of Understanding and Cooperation on

Environmental Protection, Climate Action and Energy

between

The Province of British Columbia

and

The State of Montana

Cold Water Refuge - Species conservation

Lake Evangeline, Camas Lake, and the Camas Watershed: Glacier National Park

Hydro Operations - Temp. management and system productivity

Hydro Operations - Water supply

Columbia Basin Water Transactions Program

Long term monitoring and applied climate change research

LETTERS PUBLISHED ONLINE: 25 MAY 2014 | DOI: 10.1038/NCLIMATE2252 nature climate change

Invasive hybridization in a threatened species is accelerated by climate change

Clint C. Muhlfeld^{1,2*}, Ryan P. Kovach², Leslie A. Jones^{1,3}, Robert Al-Chokhachy⁴, Matthew C. Boyer⁵, Robb F. Leary⁶, Winsor H. Lowe³, Gordon Luikart² and Fred W. Allendorf³

Floodplains in Crisis

CTUIR Floodplain Restoration Projects and Recommendations to Lessen Anticipated Impacts of Climate Change

NPCC F&W Committee Panel Presentation July 5, 2022

Gary James CTUIR Fisheries Program Manager

Presentation Topics

- 1. CTUIR Floodplain Management Approach
- 2. Floodplain Benefits
- 3. Management Problems/Poor Current Conditions
- 4. CTUIR Floodplain Project Examples
- 5. Floodplain Restoration Recommendations

Tribal Importance

Floodplain Health is critical to accomplishment of CTUIR mission statements:

CTUIR Department of Natural Resources:

To protect, restore, and enhance the First Foods - water, salmon, deer, cous, and huckleberry - for the perpetual cultural, economic, and sovereign benefit of the CTUIR. We will accomplish this utilizing traditional ecological and cultural knowledge and science to inform: 1) population and habitat management goals and actions; and 2) <u>natural resource policies and regulatory mechanisms.</u>

CTUIR Fisheries Program:

Provide sustainable harvest opportunities for aquatic species of the first food order by protecting, conserving and restoring native aquatic populations and their habitats.

Using a First Foods-Based River Vision to Guide Fisheries Actions

CTUIR

CTUIR's First Foods-Based River Vision to Guide Fisheries Restoration

First Foods Serving Order:

Restore Floodplain and Increase First Foods for Tribal Use

River Vision Touchstones

(stream health indicators)

Hydrology

- Timing and volume of river flow
- Water quality

Geomorphology

- Topographically diverse and unrestricted channel
- Complex braided channel with islands and large wood

Connectivity

- Stream accessibility to floodplain
- Longitudinal, lateral and vertical

Riparian Vegetation

- Diverse community of self-sustaining native vegetation
- Contributes shade, bank stability, large wood and leaf litter

CTUIR

River Vision Touchstones

Aquatic Biota

Healthy Native Species

Floodplain Management - Climate Change

7

River Vision Application: Fisheries Habitat

River Vision principles applied in assessments, design, implementation and M&E Floodplain Management - Climate Change CTUR

Healthy Floodplain Benefits (Watershed Resources)

Natural Flood and Erosion Control

- <u>Flood storage</u> and conveyance, reducing flood peaks and velocities
- <u>Reduce erosion</u> impacts and sediment loading
- <u>Replenish soils</u>, enhancing riparian vegetation

Surface Water Quality Maintenance

- Filter nutrients and <u>improve water quality</u>
- Enhance <u>surface-to-groundwater exchange</u> and temperature reduction

Groundwater Recharge

- Promote <u>stream access to floodplain</u> for infiltration & aquifer recharge
- Reduce frequency & duration of low surface flows (enhance base flow)

9

Healthy Floodplain Benefits (Biologic Resources)

Biological Productivity

- Increase <u>habitat complexity</u>
- Maintain <u>biodiversity</u> of plants and animals, abundance of food - integrity and productivity of ecosystem

 <u>Increase</u> spawning and rearing <u>habitat</u> by maintaining stream length and access to side channels

Healthy Floodplain Benefits (Societal Resources)

Harvest of Wild and Cultivated Products

- Increase abundance and harvest of native foods associated with floodplain
- <u>Enhance agricultural productivity</u> by increasing/maintaining groundwater levels
- Reduce flood risk and <u>limit loss of agricultural lands</u> by decreasing scour and erosion

Provide Cultural, Aesthetic and Recreational Use Values

- Contain cultural resources (historic and <u>archeological sites</u>)
- Increase <u>recreational opportunities</u> and aesthetic pleasure

Current Condition of Floodplains

Floodplain Health

- Endangered Species Act (ESA) recovery planning efforts determined that "<u>watershed function</u>" for subbasins in NE Oregon and SE Washington ranged from <u>25-50%</u> due to poor watershed health and floodplain development.
- About 75% of streams in the Umatilla and Walla Walla basins have been channelized which has drastically reduced stream length and floodplain connectivity. In-basin smolt mortality at 50-60%.
- In the Umatilla and Walla Walla Subbasins, riparian wetland habitat has declined about 90% due to floodplain development over the last century.

Anthropogenic Fish Mortality Rates in Columbia Basin 2020 CBPTF Modeling

Fish Population	Man-Induced Fish Mortality Rates				
	Hydro	Tributary Habitat	Predation	Estuary	TOTAL
Snake River Spring Chinook	62%	50%	29%	16%	94%
Mid- Columbia Steelhead	23%	80%	33%	28%	96%

Mouth of Walla Walla River – loss of meanders due to channelization

Grande Ronde River State Ditch construction cut off 45 stream miles

Problems in Floodplains

Wrong Management Emphasis

- Goal of <u>flood loss reduction</u>
- <u>Natural processes</u> in broad floodplains has been <u>second priority</u>
- <u>Development-centered uses</u> such as agricultural, municipal and roads <u>have taken precedence</u> over protection of floodplain function

Physical Changes

- <u>Reduced floodplain</u> area and formation of <u>channelized floodway</u>
- Armoring of banks with <u>rip-rap</u> to control erosion (creates <u>incising</u>)
- Reduced stream <u>length</u>, increase in <u>gradient</u> & water <u>velocity</u>
- Loss of instream and substrate <u>habitat diversity</u>
- Disrupted <u>geomorphic processes</u> (channel migration, side channels, islands, sediment transport and sorting and large wood transport)
- <u>Over-appropriation</u> of surface flows and shallow groundwater
- Loss of instream flows and decreasing groundwater levels
- Construction of <u>dams</u> disrupt fish passage and habitat diversity
- Climate change will exacerbate all of the above (FP's in CRISIS)
 Floodplain Management Climate Change
 CTUR

Climate Change Impacts on Floodplains

- Decreased summer base instream flows
- Increased summer water temperatures
- Decreased summer fish carrying capacity; decreased suitable rearing habitat (already a primary limiting factor)
- Increased magnitude and frequency of fall and spring high flow events
- Reduction of peak snow water equivalent
- Climate change perhaps greatest threat to salmonid viability in CRB
- Increasing floodplain health (implementing River Vision) perhaps the greatest opportunity to offset climate change impacts

Floodplain Land Management Recommendations

- 1. Halt or Minimize New Development in Floodplains and Wetlands
- Strengthen land use regulations to prohibit further development in floodplains, springs & wetlands and historic stream channels.

CTUIR

Feedlot near stream

Ditch runoff erosion

Concrete backyard stream

Residential and agricultural development

Highway and levee encroachment

Channelization with weirs and summer cesspools

Floodplain Management - Climate Change

CTUIR

19

Floodplain Land Management Recommendations

2. Reconnect Streams with Floodplains

- Identify locations to reclaim natural floodplain habitat and function.
- <u>Address fish passage impacts from instream development</u>
- Promote removal or set back of dikes and levees.
- Increase area of riparian conservation easements.
- Consider <u>condemnation</u> of "critical value" floodplain developments.
- Promote relocation of flood-damaged development rather than redevelopment in floodplain.
- Implementation of above floodplain restoration actions may be the best preventative action for minimizing anticipated effects of climate change.

CTUIR Floodplain Restoration

Assessments for Comprehensive & Scientifically Defensible Restoration Strategies

- Completed 7 sub-drainage and 3 reach assessments (2 more ongoing) with associated strategic action plans for future <u>River Vision-based</u> floodplain restoration.
- \circ By Subbasin: UM 3; WW 2; GR 2; TUC 1; JD 2

Restoring floodplains, channels and riparian habitat

- Changing land use to benefit fish livestock fencing, planting native plants, controlling noxious weeds
- Managing about 104 land-owner conservation agreements and easements which cover 138 stream miles; 24,000 floodplain acres
- Reactivating the floodplain, removing levees, increased channel length, and adding habitat;
 37 completed projects cover 53 stream miles

South Fork Walla Walla River Before (2014) and After (December 2016)

21

Meacham Creek floodplain restoration project - before (2011) and after (2013)

CTUIR

5-mile ditch-type reach is constrained by levees and is deeply incised

Figure 11.—Walla Walla River in the 1964 flood showing meanders in a channelized section near Milton-Freewater. (Source: OSU Archives)

Floodplain Management - Climate Change

CTUIR

23

Catherine Creek – Southern Cross Fish Habitat & Floodplain Restoration

(Construction 2015 to 2016)

Grande Ronde River Bird Track Springs (Constructed 2018 - 2019)

- **Disconnected Floodplain**
- Over-widened, armored bed
- 70% historic pool loss
- Poor riparian

2-year - Proposed 10-year - Proposed

Legend

Altered thermal regime

Proposed Condition

NOVEMBER 2019 ORTHO IMAGE (95% CONSTRUCTION COMPLETED)

Habitat Enhancement Effectiveness Monitoring

Purpose

 Determine the physical and biological responses of stream habitat enhancements across five NE Oregon/SE Washington basins

Approach

- Compare 7 sets of representative treatment and control reaches, before and after restoration implementation
- Measure habitat features, fish survival, abundance and productivity in response to habitat enhancements

Initial Results

- Positive impacts on River Vision Touchstones: Increased floodplain connectivity, hydraulic diversity, channel complexity, and riparian measurements.
- Increased fish abundance and species diversity
- Increases in desirable fish habitat preferences (i.e. pool area, large wood, high flow refugia)

Control

Treatment

CTUIR

Floodplain Water Management Recommendations

1. Surface Water Regulatory Statutes

- Increase opportunities or incentives for development of <u>conservation</u> <u>projects</u> such as irrigation efficiency, water transaction projects, shallow aquifer recharge (SAR) and restoration of natural floodplains.
- <u>Strengthen water law</u> to identify, quantify and <u>protect increased</u> instream flows resulting from water conservation efforts.
- Encourage and develop legal mechanism for irrigators to access groundwater supplies, enhanced through recharge efforts (<u>ASR</u>), in exchange for <u>protected surface flows</u>.
- Quantify and protect ecological flows from further appropriation (particularly spring/winter flows which are often considered "available").

Floodplain Water Management Recommendations

2. Groundwater Withdrawal Impacts to Surface Flows

- Strengthen the legal connection and <u>co-management linkage</u> between <u>surface water rights and groundwater rights</u> and <u>increase regulating</u> <u>groundwater usage</u> impacting surface flows.
- Identify areas where floodplain groundwater use impacts surface flow and promote aquifer recharge to lessen impacts.

Floodplain Water Management Recommendations

3. Monitor, Protect and Enforce Instream Flows

- Strengthen state and local monitoring and protection of quantified instream water rights -- particularly "new conservation project flows" that would otherwise be absorbed by junior water right holders.
- <u>Shift water management focus</u> and funding priorities from developing new agriculture water supplies to monitoring and enforcement of existing agricultural rights and protecting new instream water rights

Stream dewatering from surface diversions Same reach - increased flow Stream Anagement - Climate Change CTUR 30

CRITFC Future of Our Salmon (FOOS) Conference Healthy Floodplains, Living Rivers - October 2016 - Call to Action

<u>Goal</u> – Proceed from this conference to implement a river vision that recognizes the multiple purpose values of healthy and ecologically sustainable floodplains in the Columbia River mainstem and its tributaries that is resilient to anticipated climate change impacts.

Problem - Land and water development and management in the floodplains of the Columbia Basin over the last 150 years has not recognized the benefits and environmental capital of properly functioning floodplains. Status quo floodplain management in the Columbia River Basin is not adequate to reverse the negative ecological and social impacts. These concerns are expected to increase as a result of the greatly diminished and altered current condition of our floodplains coupled with climate change.

CRITFC Future of Our Salmon (FOOS) Conference Healthy Floodplains, Living Rivers - October 2016 - Call to Action

<u>Recommendations</u> – A collaborative and unified whole-basin vision and action framework must be developed and implemented. Such a framework would target and focus actions to connect all agencies, tribes and communities through support of common objectives for improved natural floodplain health and ecological function in the Colombia Basin An action framework would immediately call for no net loss of floodplain habit and then prescribe widespread floodplain enhancement actions. To initiate development of this approach, form a post-conference transboundary planning committee to:

- 1. <u>Identify entities</u> which have management authorities related to Columbia Basin floodplain land or water management.
- 2. Send inquiries to entities requesting that they delineate how their respective authorities can be implemented (as per "Workshop Call to Action Points") to <u>increase efforts to address natural floodplain function</u> in order to achieve net ecological/cultural/social/ecomomic benefits.
- 3. <u>Compile</u> responses into a draft master list of improved Columbia Basin <u>floodplain and water</u> <u>management actions</u>.
- 4. Utilize GIS designation of historic, current and planned floodplain areas to locate restoration actions and <u>track floodplain area recovery</u>.
- 5. Develop <u>education and outreach</u> approach which identifies necessary stakeholders and promotes understanding and benefits of actions.
- 6. Disseminate draft framework to agencies, tribes and stakeholders for comment.

Entities with Responsibilities or Authorities that Effect Fish Survival in Tributary Habitat (draft submitted by CTUIR for CBC Process)

Entity Type	Entity	General Responsibility or Management Authority
	NMFS	Administer ESA programs for listed anadromous fish
Federal	USFWS	Administer ESA programs for listed resident fish
	USFS	Manage federally-owned lands; generally in headwaters
	BLM	Manage federally-owned lands; generally located downstream of USFS lands
	BOR	Manage water storage projects and fish passage and habitat mitigation projects
	USACE	Construct/maintain/manage flood risk projects; floodplain permitting
	NRCS	Manage land conservation programs and implement projects
	EPA	Manage and grant funding for land/water quality improvement
State	Fish Managers	Floodplain project review and permitting and watershed project implementation
	Water Resource Managers	Manage and appropriate instream flow and groundwater
	Land Resource Managers	Manage state-owned lands
	Highway Departments	Manage road transportation networks in floodplains near and over streams
Tribal	Indian Tribes	Manage reservation lands and implement projects on and off reservation
	Counties	Administer land use and zoning laws
Local	Cities	Manage lands within city limits
	Watershed Councils	Facilitate stakeholder support and implement watershed projects
	CD's	Facilitate land conservation programs and implement projects
	Land Trusts/Cons. Partnerships	Implement watershed projects
Mitigation	NPCC	Adopt Columbia Basin F&W Program and conduct project science reviews
Programs	BPA	Fund F&W mitigation projects through Columbia Basin F&W Program
	State	Implement watershed pjcts: WA Recovery Brd, OR Watershed Enh. Brd, FP by Design, etc.
	Individual landowners	Manage private owned lands
Private	Corporate landowners	Manage private owned lands
	Railroads	Manage rail transportation networks in floodplains near and over streams

CTUIR

QUESTIONS?

Climate Impacts to Status and Trend Monitoring in Southeast Washington

Ethan Crawford Fish Biologist 3 WDFW, Fish Science

1

Project Overview

-BPA Project numbers:

2002-053-00 Lower Snake Steelhead VSP 2000-039-01 Touchet Steelhead VSP

-Both projects are status and trend monitoring projects focused on collecting high quality data to inform VSP metrics for summer run steelhead and trajectory toward recovery.

Tools: -Weirs -Instream PIT Detection Systems(IPTDS) -Rotary smolt traps

Data Generated

- Adult Abundance and Composition (pHOS)
- Emigrant
 Abundance
- Productivity
- Diversity
- Spatial Structure

Department of Fish and Wildlife

Direct Climate Impacts

- Earlier runoff
- Increasing flooding magnitude & frequency
- Higher summer peak temperatures & longer duration
- Wildfire risk, magnitude & frequency

Impacts to Implementation

- Trap locations
- Operational Schedule
- IPTDS washouts
- Increased repair & maintenance

Touchet Smolt Trapping

Changes to the Hydrograph

- increased mortality risks due to prolonged holding periods of summer steelhead
- flooding presents numerous risks across steelhead life stages
- exacerbate tributary bypass/overshoot behavior (Siegel et al 2021)
- Increasing scour/geomorphic change
- Changes to travel time in the migration corridor
- Spawning distribution

Increasing Temperature

- constricting suitable instream habitat
- Overshoot/bypass
- Migratory
 corridor mortality
- Life history strategies?

340mm 12/2015 Asotin RST(E. Crawford WDFW)

Adventurer-Pe

Changes in Aquatic Communities

- range expansion by non-native fish (walleye, bass, channel catfish, American shad, etc.)
- Changes in nesting conditions for avian predators

In Summary...

- It's happening, status and trend projects should continue and improve monitoring to detect changes in focal populations and watersheds.
- Building for resiliency, both in our operations and the populations we monitor.

IDFG Anadromous Fish Screen Program – Climate Change Considerations and Potential Confounding Factors

Idaho Fish Screening Improvement Project – 1994-015-00 – Expense Upper Salmon Fish Screen and Tributary Passage - 2007-399-00 – Capital

Paddy Murphy – Program Coordinator Anadromous Fish Screen, Passage, and Habitat Program Idaho Department of Fish and Game Region 7 – Salmon, Idaho

Existing Fish Screens by State

Idaho Department of Fish and Game Anadromous Fish Screen Program

- Located in Salmon, Idaho.
- 12 full-time/ 17 temporary employees •
- Installed, operate, and maintain 281 fish screens in the USRB
- NOAA Mitchell Act / BPA
- **Major Limiting Factor:** . Fish passage and entrainment

Valley Creek

- 350 miles mainstem river
- 130 miles tributary streams

Objectives

Goal -

Increasing fry to smolt survival of anadromous salmon and steelhead

- Operate and maintain 281 fish screens on a daily basis
- Improving fish passage to critical tributary habitat

Chinook Salmon Entrainment

Lemhi River

- High entrainment losses into irrigation systems provided the impetus for fish screening in the late 1950's.
- In 1958, it was estimated that 423,000 salmon fingerlings were lost in 90 irrigation canals (Gebhards 1958).
- In 1961 and 1962, it was estimated that 84 screens on the Lemhi River bypassed 271,000 and 91,500 juvenile Chinook salmon (Corley 1962).

Entrainment Rates

Annika W. Walters, Damon M. Holzer, James R. Faulkner, Charles D. Warren, Patrick D. Murphy & Michelle M. McClure (2012): Quantifying Cumulative Entrainment Effects for Chinook Salmon in a Heavily Irrigated Watershed, Transactions of the American Fisheries Society, 141:5, 1180-1190

Limiting Factor: Water Diversion

Climate Change will further compound these issues:

- Entrainment
- Fish passage /Migration barriers
- Isolation of populations
- Alters fluvial processes
- Decreases available habitat
- Decreases productivity
- Increases water temperatures

Upper Salmon River Basin Fish Screening

- High percentage (> 90%) of Chinook salmon spawn on private property
- All mainstem diversions are screened
- Rotary drum screens built to NMFS Juvenile Fish Screen Criteria
- High Priority Subbasin Plans, Recovery Plans

Emphasis on Water Conservation and Partnerships

- Fish screens can't resolve habitat issues
- Screen installation is the last action

- Water conservation
- Diversion eliminations
- Diversion consolidations
- Conservation agreements
- Purchase water rights
- Pipeline for conveyance loss
- Sprinkler system to reduce consumption

Fish Screens are Complex

- Needs a true Bio-Engineering approach
- Every site has its own unique characteristics
- Engineering is critical to meet criteria
- Biological interactions need consideration
- Maintenance cannot be underestimated

Juvenile Fish Screen Criteria

Juvenile Fish Screen Criteria

Juvenile Fish Screen Criteria

Screen Tenders

"Predictable Performance with Predictable Biological Effects"

You get what you pay for.

7 ESV

"Efficient passage means that passage opportunity is continually maintained by vigilant operation and maintenance."

● 44.611851°N, 114.169014°W ±16.4ft ▲ 4849ft

S 180

SE

120

E

90

60

Morgan Creek 10 May 2017, 2:35 PM

SW

240

210

High Water Damage

Storm Events -Severe Thunderstorms/Microburst

Salmon River (Below East Fork Salmon River)

Forest Fires

A Foundation Built on Relationships

Low Flow Conditions

2021 – Low Flow Conditions

Juvenile Chinook Salmon Migration

Entrainment Rates

Outmigrating Chinook Salmon Bypassed at L-03 Fish Screen in 2021, 57.6% of Total Tagged Chinook Salmon at LLR Screw Trap

Tributary Screening

Marin Marine Marine

21 22 23 51 M SI

- CANCINA

2 3 4 5 6 7 8 9 10 11 2 5 2 5 2 15 02 62 82 12 52 52 52 13 14 15 16 1

Building Resiliency

- More extreme hydrographs both at high and low water periods.
- Earlier, spring run-off
- Rain on snow events
- Intense thunderstorms/microbursts
- Increasing scour and bedload inputs
- Low water, warm temperatures
- High entrainment rates
- Operator stress

